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Module 3C6

VIBRATION

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet and at the top of
each answer sheet.

STATIONERY REQUIREMENTS
Write on single-sided paper.

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed.
Attachment: 3C5 Dynamics and 3C6 Vibration data sheet (7 pages).
You are allowed access to the electronic version of the Engineering Data Books.

10 minutes reading time is allowed for this paper at the start of
the exam.
The time taken for scanning/uploading answers is 15 minutes.

Your script is to be uploaded as a single consolidated pdf
containing all answers.
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1 A cantilever beam of length L, uniform cross-section of area A and second moment
of area I is made of a material with density ρ and Young’s modulus E .

(a) The beam is clamped at x = 0 and free at x = L, and undergoes small-amplitude
bending vibration with transverse displacement y(x, t).

(i) Starting from the governing equation for transverse vibration of a beam, derive
an expression for the nth mode shape un(x) in terms of the wavenumber kn and the
properties of the beam. [20%]

(ii) Find the natural frequencies ωn of the beam for the first four modes, using a
suitable approximation where needed. Express your answer as factors αn of the first
natural frequency ω1, i.e. in the form ωn = αnω1. [10%]

(b) A single degree-of-freedom mass-on-spring is now connected to the beam at x = L,
with mass m and stiffness k, as shown in Fig. 1. The beam-spring connection is a
frictionless pin, and the mass displacement is indicated by z(t). The natural frequency of
the uncoupled mass-on-spring is defined as Ω =

√
k/m.

(i) For the case k → 0, what are the first four natural frequencies of the coupled
system? [10%]

(ii) For the case k → ∞, qualitatively describe what you expect for the first four
natural frequencies of the coupled system. [10%]

(iii) Derive an expression whose solutions give the natural frequencies of the
coupled system. Write your answer in terms of the driving point transfer function
H(L, L,ω) of the uncoupled beam and any other system parameters that are needed.

[30%]

(iv) For the case when Ω ≈ ω2 (i.e. when the natural frequency of the mass-on-
spring is tuned to be close to the second natural frequency of the uncoupled beam),
use a graphical construction to show the effect of the mass-on-spring on the natural
frequencies of the coupled system ω′n. [20%]
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2 A straight pipe is to be inspected for a possible crack. It is proposed that an axial
vibration test be carried out to look for changes in the natural frequencies. The pipe has
length L and cross-sectional area A. It is made from a material of density ρ and Young’s
modulus E . The pipe can undergo small amplitude axial oscillations y(x, t) where x is the
distance from one end of the pipe and t is time. The ends of the pipe are free.

(a) For an undamaged pipe:

(i) find expressions for the mode shapes and natural frequencies of the pipe. [10%]

(ii) find a summation expression for the driving point transfer function G(x, x,ω)
from input force to output axial displacement at a distance x from one end of the
pipe, allowing for light damping. [20%]

(b) A small crack at a distance x = a from one end of the pipe can be modelled as a
local reduction in axial stiffness. The potential energy of the cracked pipe can be written:

V = V0 − ∆V

whereV0 is the potential energy of an undamaged pipe and ∆V is the reduction in potential
energy caused by the crack which can be written:

∆V =
1
2

C
(
∂y

∂x

����
x=a

)2

C is a constant that corresponds to the reduction in stiffness and the term in brackets
indicates the first derivative of displacement evaluated at x = a. All other properties of
the pipe can be assumed to be unchanged from part (a).

(i) Use Rayleigh’s principle to find an approximate expression for the new natural
frequency ω′n of the nth mode of the pipe for a given stiffness reduction C. [30%]

(ii) Sketch the driving point transfer function G(L, L,ω) for the undamaged pipe
of part (a) and when there is a small crack at a distance x = L/4 from one end.
Highlight which modes are most and least affected by the presence of the crack. [30%]

(iii) Briefly describe how the crack could be detected using a wave-based approach.
[10%]
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3 Figure 2 shows a uniform rigid beam of mass M and length L, supported by two
springs of stiffness k. A second point mass m is attached to the centre of the beam by
another spring of stiffness k. The beam can move in the vertical direction and rotate, while
the point mass can move in the vertical direction only. The displacements of the ends of
the beam and the point mass from equilibrium are denoted x1, x2 and x3 as shown.

(a) Write an expression for the kinetic energy and show that the potential energy is

V =
k
2

(
5
4

x2
1 +

5
4

x2
2 + x2

3 +
1
2

x1x2 − x1x3 − x2x3

)
.

[20%]

(b) Sketch the mode shapes and write down estimates of the natural frequencies for the
cases:

(i) m/M � 1

(ii) m/M � 1

For each case state which one of these frequencies is exact. [40%]

(c) For the case in part (b)(ii) use Rayleigh’s quotient with the mode shape
(x1, x2, x3)

T = (1,1, α)T to find an exact expression for the remaining two natural
frequencies. Compare these frequencies and corresponding mode shapes with your
estimates in part (b)(ii). [40%]
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Fig. 2
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4 A beam is modelled as four uniform, rigid rods of length L and mass m, joined by
frictionless pins at their ends and connected by springs with bending stiffness k, as shown
in Fig. 3. The rods are constrained to vibrate in a vertical plane and the displacements of
the joints are y1, y2 and y3. Ignore tension in the rods.

(a) Show that for small transverse vibration, the potential energy can be written:

V =
k

L2

{
3y2

1 + 3y2
2 + 3y2

3 − 4y1y2 − 4y2y3 + y1y3
}

Hence or otherwise determine the stiffness matrix. [10%]

(b) Determine the kinetic energy and the mass matrix. [20%]

(c) Sketch the natural mode shapes. [20%]

(d) Differentiate Rayleigh’s quotient to find the natural frequencies and corresponding
mode shapes of two symmetric modes. Explain whether or not these frequencies are exact. [20%]

(e) Find another natural frequency from one of your assumed mode shapes using an
equation relating eigenvalues and eigenvectors. Explain whether or not this frequency is
exact. [10%]

(f) Sketch the amplitude of the displacement y3 due to a sinusoidal force F1 on a dB
scale. [20%]
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Fig. 3
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Part IIA Data Sheet

Module 3C5 Dynamics
Module 3C6 Vibration

1 Dynamics in three dimensions

1.1 Axes fixed in direction

(a) Linear momentum for a general collection of particles mi:

dp

dt
= F (e)

where p = MvG, M is the total mass, vG is the velocity of the centre of mass and F (e) the
total external force applied to the system.

(b) Moment of momentum about a general point P

Q(e) = (rG − rP)× ṗ+ ḣG

= ḣP + ṙP × p

where Q(e) is the total moment of external forces about P. Here hP and hG are the moments
of momentum about P and G respectively, so that for example

hP =
∑

i

(ri − rP)×miṙi

= hG + (rG − rP)× p
where the summation is over all the mass particles making up the system.

(c) For a rigid body rotating with angular velocity ω about a fixed point P at the origin of
coordinates

hP =

∫
r × (ω × r)dm = Iω

where the integral is taken over the volume of the body, and where

I =



A −F −E
−F B −D
−E −D C


 , ω =



ωx
ωy
ωz


 , r =



x
y
z




and A =
∫

(y2 + z2)dm B =
∫

(z2 + x2)dm C =
∫

(x2 + y2)dm

D =
∫
yz dm E =

∫
zx dm F =

∫
xy dm

where all integrals are taken over the volume of the body.
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1.2 Axes rotating with angular velocity Ω

Time derivatives of vectors must be replaced by the “rotating frame” form, so that for example

ṗ+Ω × p = F (e)

where the time derivative is evaluated in the moving reference frame.

When the rate of change of the position vector r is needed, as in 1.1(b) above, it is usually easiest
to calculate velocity components directly in the required directions of the axes. Application of
the general formula needs an extra term unless the origin of the frame is fixed.

1.3 Euler’s dynamic equations (governing the angular motion of a
rigid body)

(a) Body-fixed reference frame:

Aω̇1 − (B − C)ω2ω3 = Q1

Bω̇2 − (C − A)ω3ω1 = Q2

Cω̇3 − (A−B)ω1ω2 = Q3

where A, B and C are the principal moments of inertia about P which is either at a fixed point
or at the centre of mass. The angular velocity of the body is ω = [ω1, ω2, ω3] and the moment
about P of external forces is Q = [Q1, Q2, Q3] using axes aligned with the principal axes of
inertia of the body at P.

(b) Non-body-fixed reference frame for axisymmetric bodies (the“Gyroscope equations”):

AΩ̇1 − (AΩ3 − Cω3)Ω2 = Q1

AΩ̇2 + (AΩ3 − Cω3)Ω1 = Q2

Cω̇3 = Q3

where A, A and C are the principal moments of inertia about P which is either at a fixed point
or at the centre of mass. The angular velocity of the body is ω = [ω1, ω2, ω3] and the moment
about P of external forces is Q = [Q1, Q2, Q3] using axes such that ω3 and Q3 are aligned
with the symmetry axis of the body. The reference frame (not fixed in the body) rotates with
angular velocity Ω = [Ω1, Ω2, Ω3] with Ω1 = ω1 and Ω2 = ω2.

1.4 Lagrange’s equations

For a holonomic system with generalised coordinates qi

d

dt

[∂T
∂q̇i

]
− ∂T

∂qi
+
∂V

∂qi
= Qi

where T is the total kinetic energy, V is the total potential energy and Qi are the non-
conservative generalised forces.
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1.5 Hamilton’s equations

(a) Basic formulation

The generalized momenta pi and the Hamiltonian H(p, q) are defined as

pi =
∂T

∂q̇i
, H(p, q) =

∑

i

piq̇i − T + V

where it should be noted that in the expression for the Hamiltonian the velocities q̇i(p, q) must
be expressed as a function of the generalized momenta and the generalized displacements.

Hamilton’s equations are

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
+Qi.

(b) Extension topics

The total time derivative of some function f(p, q, t) can be expressed in terms of the Poisson
bracket {f,H} in the form

df

dt
=
∂f

∂t
+ {f,H}, {f,H} ≡

∑

i

[
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

]
.

Common forms of Canonical Transform for Hamilton’s equations are:

Type Generating function 1st eqn 2nd eqn Kamiltonian

1 G1(q,Q, t) p =
∂G1

∂q
P = −∂G1

∂Q
K = H +

∂G1

∂t

2 G2(q,P , t) p =
∂G2

∂q
Q =

∂G2

∂P
K = H +

∂G2

∂t

3 G3(p,Q, t) q = −∂G3

∂p
P = −∂G3

∂Q
K = H +

∂G3

∂t

4 G4(p,P , t) q = −∂G4

∂p
Q =

∂G4

∂P
K = H +

∂G4

∂t
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2 Vibration modes and response

Discrete Systems Continuous Systems

1. Equation of motion
The forced vibration of an N -degree-of-freedom
system with mass matrix M and stiffness ma-
trix K (both symmetric and positive definite)
is governed by:

The forced vibration of a continuous system
is determined by solving a partial differential
equation: see Section 3 for examples.

Mÿ + Ky = f
where y is the vector of generalised displace-
ments and f is the vector of generalised forces.

2. Kinetic Energy

T =
1

2
ẏTMẏ T =

1

2

∫
ẏ2dm

where the integral is with respect to mass (sim-
ilar to moments and products of inertia).

3. Potential Energy

V =
1

2
yTKy See Section 3 for examples.

4. Natural frequencies and mode shapes
The natural frequencies ωn and corresponding
mode shape vectors u(n) satisfy

Ku(n) = ω2
nMu(n)

The natural frequencies ωn and mode shapes
un(x) are found by solving the appropriate dif-
ferential equation (see Section 3) and bound-
ary conditions, assuming harmonic time depen-
dence.

5. Orthogonality and normalisation

u(j)T Mu(k) =

{
0 j 6= k
1 j = k

u(j)T Ku(k) =

{
0 j 6= k
ω2
j j = k

∫
uj(x)uk(x)dm =

{
0 j 6= k
1 j = k

6. General response
The general response of the system can be writ-
ten as a sum of modal responses:

The general response of the system can be writ-
ten as a sum of modal responses:

y(t) =
N∑

j=1

qj(t)u
(j) = Uq(t) y(x, t) =

∑

j

qj(t)uj(x)

where U is a matrix whose N columns are
the normalised eigenvectors u(j) and qj can be
thought of as the ‘quantity’ of the jth mode.

where y(x, t) is the displacement and qj can be
thought of as the ‘quantity’ of the jth mode.
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7. Modal coordinates
Modal coordinates q satisfy: Each modal amplitude qj(t) satisfies:

q̈ +
[
diag(ω2

j )
]
q = Q q̈j + ω2

j qj = Qj

where y = Uq and the modal force vector
Q = UT f .

where Qj =
∫
f(x, t)uj(x)dm and f(x, t) is the

external applied force distribution.

8. Frequency response function
For input generalised force fj at frequency ω
and measured generalised displacement yk, the
transfer function is

For force F at frequency ω applied at point x1,
and displacement y measured at point x2, the
transfer function is

H(j, k, ω) =
yk
fj

=

N∑

n=1

u
(n)
j u

(n)
k

ω2
n − ω2

H(x1, x2, ω) =
y

F
=
∑

n

un(x1)un(x2)

ω2
n − ω2

(with no damping), or (with no damping), or

H(j, k, ω) =
yk
fj
≈

N∑

n=1

u
(n)
j u

(n)
k

ω2
n + 2iωωnζn − ω2

H(x1, x2, ω) =
y

F
≈
∑

n

un(x1)un(x2)

ω2
n + 2iωωnζn − ω2

(with small damping), where the damping fac-
tor ζn is as in the Mechanics Data Book for
one-degree-of-freedom systems.

(with small damping), where the damping fac-
tor ζn is as in the Mechanics Data Book for
one-degree-of-freedom systems.

9. Pattern of antiresonances
For a system with well-separated resonances
(low modal overlap), if the factor u

(n)
j u

(n)
k has

the same sign for two adjacent resonances then
the transfer function will have an antiresonance
between the two peaks. If it has opposite sign,
there will be no antiresonance.

For a system with well-separated resonances
(low modal overlap), if the factor un(x1)un(x2)
has the same sign for two adjacent resonances
then the transfer function will have an antireso-
nance between the two peaks. If it has opposite
sign, there will be no anti-resonance.

10. Impulse responses
For a unit impulsive generalised force fj = δ(t),
the measured response yk is given by

For a unit impulse applied at t = 0 at point x1,
the response at point x2 is

g(j, k, t) = yk(t) =

N∑

n=1

u
(n)
j u

(n)
k

ωn
sinωnt g(x1, x2, t) =

∑

n

un(x1)un(x2)

ωn
sinωnt

for t ≥ 0 (with no damping), or for t ≥ 0 (with no damping), or

g(j, k, t) ≈
N∑

n=1

u
(n)
j u

(n)
k

ωn
e−ωnζnt sinωnt g(x1, x2, t) ≈

∑

n

un(x1)un(x2)

ωn
e−ωnζnt sinωnt

for t ≥ 0 (with small damping). for t ≥ 0 (with small damping).
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11. Step response
For a unit step generalised force fj applied at
t = 0, the measured response yk is given by

For a unit step force applied at t = 0 at point
x1, the response at point x2 is

h(j, k, t) = yk(t) =

N∑

n=1

u
(n)
j u

(n)
k

ω2
n

[
1−cosωnt

] h(x1, x2, t) =
∑

n

un(x1)un(x2)

ω2
n

[
1−cosωnt

]

for t ≥ 0 (with no damping), or for t ≥ 0 (with no damping), or

h(j, k, t) ≈
N∑

n=1

u
(n)
j u

(n)
k

ω2
n

[
1−e−ωnζnt cosωnt

] h(x1, x2, t) ≈
∑

n

un(x1)un(x2)

ω2
n

[
1−e−ωnζnt cosωnt

]

for t ≥ 0 (with small damping). for t ≥ 0 (with small damping).

2.1 Rayleigh’s principle for small vibrations

The “Rayleigh quotient” for a discrete system is

V

T̃
=

yTKy

yTMy

where y is the vector of generalised coordinates (and yT is its transpose), M is the mass matrix
and K is the stiffness matrix. The equivalent quantity for a continuous system is defined using
the energy expressions in Section 3.

If this quantity is evaluated with any vector y, the result will be
(1) ≥ the smallest squared natural frequency;
(2) ≤ the largest squared natural frequency;
(3) a good approximation to ω2

k if y is an approximation to u(k).

Formally
V

T̃
is stationary near each mode.
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3 Governing equations for continuous systems

3.1 Transverse vibration of a stretched string

Tension P , mass per unit length m, transverse displacement y(x, t), applied lateral force f(x, t)
per unit length.

Equation of motion Potential energy Kinetic energy

m
∂2y

∂t2
− P ∂

2y

∂x2
= f(x, t) V =

1

2
P

∫ (∂y
∂x

)2
dx T =

1

2
m

∫ (∂y
∂t

)2
dx

3.2 Torsional vibration of a circular shaft

Shear modulus G, density ρ, external radius a, internal radius b if shaft is hollow, angular
displacement θ(x, t), applied torque τ(x, t) per unit length. The polar moment of area is given
by J = (π/2)

(
a4 − b4

)
.

Equation of motion Potential energy Kinetic energy

ρJ
∂2θ

∂t2
−GJ ∂

2θ

∂x2
= τ(x, t) V =

1

2
GJ

∫ (∂θ
∂x

)2
dx T =

1

2
ρJ

∫ (∂θ
∂t

)2
dx

3.3 Axial vibration of a rod or column

Young’s modulus E, density ρ, cross-sectional area A, axial displacement y(x, t), applied axial
force f(x, t) per unit length.

Equation of motion Potential energy Kinetic energy

ρA
∂2y

∂t2
− EA∂

2y

∂x2
= f(x, t) V =

1

2
EA

∫ (∂y
∂x

)2
dx T =

1

2
ρA

∫ (∂y
∂t

)2
dx

3.4 Bending vibration of an Euler beam

Young’s modulus E, density ρ, cross-sectional area A, second moment of area of cross-section
I, transverse displacement y(x, t), applied transverse force f(x, t) per unit length.

Equation of motion Potential energy Kinetic energy

ρA
∂2y

∂t2
+ EI

∂4y

∂x4
= f(x, t) V =

1

2
EI

∫ (∂2y
∂x2

)2
dx T =

1

2
ρA

∫ (∂y
∂t

)2
dx

Note that values of I can be found in the Mechanics Data Book.

The first non-zero solutions for the following equations have been obtained numerically and are
provided as follows:

cosα coshα + 1 = 0, α1 = 1.8751
cosα coshα− 1 = 0, α1 = 4.7300
tanα− tanhα = 0, α1 = 3.9266
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