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ENGINEERING TRIPOS PART IIA

Tuesday 26 April 2022 9.30 to 11.10

Module 3C7

MECHANICS OF SOLIDS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
3C7 formulae sheet (2 pages).
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.
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1 A turbine rotor has the form of a cylinder of outer radius 40 mm and length 60 mm
with a central circular hole of radius 20 mm. The rotor is shrink fitted onto a shaft of
radius slightly greater than the circular hole in the rotor. The rotor and the shaft are made
from the same alloy steel, with Young’s modulus E = 210 GPa, Poisson’s ratio ν = 0.3,
and uniaxial tensile yield strength Y = 240 MPa.

(a) The assembly is to transmit a torque Q = 500 Nm and no slip is to occur between the
shaft and the rotor. Under plane stress conditions and assuming no yielding, determine:

(i) the minimum interfacial pressure between the rotor and the shaft if the friction
coefficient between the rotor and the shaft is µ = 0.09; [20%]

(ii) the corresponding minimum interference fit δ between the shaft and the rotor;
[50%]

(iii) the maximum principal stress in the assembly (you may neglect the
contribution to the stress field due to the torque). [10%]

(b) If the maximum shear stress in the assembly is limited to Y/3, comment on whether
the above design of the rotor assembly is suitable. [20%]
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2 (a) In polar co-ordinates (r, θ), a Airy stress function φ is given by

φ = A
(
θ +

sin 2θ
2

)
,

where A is a constant. This stress function has been proposed to determine the stress field
in an elastic half-space subjected to a surface couple M as shown in Fig. 1a. Calculate the
stresses σrr , σθθ and σrθ at any (r, θ) and hence determine A in terms of M . [40%]

(b) For any function ψ(x, y) in Cartesian co-ordinates (x, y) show that

∂ψ

∂y
=
∂ψ

∂r
sin θ +

∂ψ

∂θ

cos θ
r

,

using the usual relations x = r cos θ and y = r sin θ. [20%]

(c) We now wish to calculate the stresses for the case of two equal and opposite surface
couples acting a small distance a apart as shown in Fig. 1b. Using superposition along
with the stress function from (a) show that, for a vanishingly small a, the appropriate stress
function is given by

φ1 = −
2Ma
πr

cos3 θ.

[Hint: Use the co-ordinate transformation law obtained in (b).] [40%]
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3 (a) Derive the equilibrium equation in the z−direction in terms of the shear stress
components σzy and σzx with all other stress components equal to zero. [20%]

(b) For the case of a torsion of a shaft made from an isotropic elastic material, the strain
components are given in terms of the warping function w(x, y) and the twist β per unit
length of the shaft by

γzx = −βy +
∂w

∂x
, and γzy = βx +

∂w

∂y
.

Hence show that the warping function satisfies ∇2w = 0. [10%]

(c) The function

Ψ = C
(
x +

a
3

) (
y +

x
√

3
−

2a

3
√

3

) (
y −

x
√

3
+

2a

3
√

3

)
=

Ca
3

[
x2 + y2 −

1
a

(
x3 − 3xy2

)
−

4a2

27

]
,

is being considered as a Prandtl stress function to investigate the elastic torsion of a
prismatic bar. The cross-section of the bar is an equilateral triangle of side 2a/

√
3 with

the origin of the co-ordinate system coincident with the centroid of the cross-section, as
shown in Fig. 2. Show that this function represents a valid choice and hence determine the
constant C in terms of the twist β per unit length of the shaft and the shear modulus G. [30%]

(d) The function

w = Bβ
(
y3 − 3x2y

)
,

can be used as a warping function for this shaft with the triangular cross-section. Calculate
the constant B in terms of the dimension a. [40%]

y

x0

Fig. 2
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4 (a) Briefly describe the calculation of the collapse load of a structure using the
upper bound theorem of plasticity. Under what circumstances will be the stress associated
with an upper bound solution satisfy equilibrium? [20%]

(b) An apparatus for the plane strain “back extrusion” of a perfectly plastic metal with
shear yield strength k is shown in Fig. 3. The thickness of the metal slab is reduced
from 6b to 2b in the apparatus under the action of the pair of rigid dies with 45o sloping
surfaces.

(i) Using the tangential velocity discontinuity lines shown as dashed lines in Fig. 3
calculate the extrusion force P per unit depth into the page in terms of the variable x.
You may assume negligible friction between the metal and all contacting surfaces. [50%]

(ii) Determine the optimum extrusion force. [20%]

(iii) Without performing any further calculations briefly describe how the above
calculation can be altered to include the effect of friction along the sloping surfaces.

[10%]

3b

x

3b

b
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45o

Fig. 3
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Engineering Tripos Part IIA          THIRD YEAR 

 

Module 3C7: Mechanics of Solids 

ELASTICITY  and  PLASTICITY  FORMULAE 

 

1. Axi-symmetric deformation :  discs, tubes and spheres 

  Discs and tubes    Spheres 

 Equilibrium   =  
d(rrr)

dr
   +  2r2      =  

1

2r
 
d(r2rr)

dr
    

 Lamé’s equations (in elasticity) rr  =  A  –  
B

r2   –  
3+

8
  2r2   –  

E

r2  

c

r

rTdr    rr  =  A  –  
B

r3  

       =  A  +  
B

r2   –  
1+3

8
  2r2   +  

E

r2  

c

r

rTdr   –  ET    =  A  +  
B

2r3  

2. Plane stress and plane strain 

Plane strain elastic constants 
21 −

=
E

E ; 





−
=

1
 ; ( ) += 1  

  Cartesian coordinates Polar coordinates 

Strains xx  =  
∂u

∂x
  rr  =  

∂u

∂r
   

  yy  =  
∂v

∂y
    =  

u

r
   +  

1

r
 
∂v

∂
  

  xy  =  
∂u

∂y
   +  

∂v

∂x
  r  =  

∂v

∂r
   +  

1

r
 
∂u

∂
   –  

r

v
 

 

Compatibility 
∂2xy

∂x∂y
     =    

∂2xx

∂y2    +   
∂2yy

∂x2   
∂

∂r
  









r 
∂r

∂
    =   

∂

∂r
  









r2 
∂

∂r
   –  r 

∂rr

∂r
   +   

∂2rr

∂2   

 

or (in elasticity  

with no thermal strains  






∂2

∂x2  +  
∂2

∂y2   (xx + yy)   =  0 






∂2

∂r2 + 
1

r
 
∂

∂r
 + 

1

r2 
∂2

∂2  ( )rr +   =  0  

or body forces) 

Equilibrium  
∂xx

∂x
   +  

∂xy

∂y
   =  0 

∂

∂r
 (rrr)  +  

∂r

∂
   –    =  0 

   
∂yy

∂y
   +  

∂xy

∂x
   =  0  

∂

∂
   +  

∂

∂r
 (rr)   +  r  =  0 

 

4  =  0  (in elasticity) 






∂2

∂x2  +  
∂2

∂y2  






∂2

∂x2  +  
∂2

∂y2    =  0 






∂2

∂r2 + 
1

r
 
∂

∂r
 + 

1

r2 
∂2

∂2     

      ×   






∂2

∂r2 + 
1

r
 
∂
∂r

 + 
1

r2 
∂2

∂2      =  0 

Airy Stress Function xx  =  
∂2

∂y2  rr  =  
1

r
 
∂
∂r

   +  
1

r2 
∂2

∂2  

  yy  =  
∂2

∂x2    =  
∂2

∂r2  

  xy  =  – 
∂2
∂x∂y

  r  =  – 




















rr

1
  



 

 

3. Torsion of prismatic bars 

   Prandtl stress function:     zx  (= x)  =  
y


,     zy  (= y)  =  – 

x


 

   Equilibrium:      T   =  2 
A

dA  

   Governing equation for elastic torsion:       G22 −=    where    is the angle of twist per unit length. 

 

4. Total potential energy of a body 

       ∏  =  U  –  W 

   where     U  =  
1

2 



V


~

T [D] 
~

 dV    ,     W  = P
~

  T u
~

         and    [D]  is the elastic stiffness matrix. 

 

5. Principal stresses and stress invariants 

 Values of the principal stresses,  P,  can be obtained from the equation 

       









xx – P xy xz

xy yy – P yz

xz yz zz – P

   =  0 

This is equivalent to a cubic equation whose roots are the values of the 3  principal stresses, i.e. the possible values of  P.   

Expanding:  P
3   –  I1 P

2  +  I2P  –  I3   =   0   where  I1  =  xx  +  yy  +  zz,   

       I2   =   








yy yz

yz zz

   +  








xx xz

xz zz

   +  








xx xy

xy yy

          and           I3   =   









xx xy xz

xy yy yz

xz yz zz

 . 

6. Equivalent stress and strain 

 Equivalent stress  ̄   =  
1

2
  { }(1 – 2)2  +  (2 – 3)2  +  (3 – 1)2  

1/2
 

 Equivalent strain increment  d̄    = 
2

3
  { }d1

2  +  d2
2  +  d3

2  
1/2

 

 

7. Yield criteria and flow rules 

 Tresca 

 Material yields when maximum value of |1 – 2|,  |2 – 3|  or  |3 – 1|   =  Y    =   2k, and then,    

   if  3  is the intermediate stress,   d1 : d2 : d3   =  (1 : –1 : 0) where    ≠ 0. 

 von Mises 

 Material yields when, (1 – 2)2  +  (2 – 3)2  +  (3 – 1)2   =   2Y2  =  6k2, and then 

    
d1

'1
      =     

d2

'2
      =     

d3

'3
       =    

d1 – d2

1 – 2
    =    

d2 – d3

2 – 3
    =    

d3 – d1

3 – 1
     =      =   

3

2
 
d̄

̄
      . 
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