
Version VSD/3

EGT2
ENGINEERING TRIPOS PART IIA

Tuesday 25 April 2023 9.30 to 11.10

Module 3C7

MECHANICS OF SOLIDS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
3C7 formulae sheet (2 pages).
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.

Page 1 of 6



Version VSD/3

1 A shaft with a uniform circular cross-section of diameter D is made from an isotropic
elastic material with shear modulus G. The shaft is subjected to a torque T which causes
a twist β per unit length.

(a) The shear stress at a radial location r in the shaft is τ = Gβr . Hence calculate the
torque T in terms of G, β and D. [20%]

(b) Determine an appropriate Prandtl stress function ψ for this problem. [20%]

(c) Show that ψ from part (b):

(i) satisfies the governing equation ∇2ψ = −2Gβ [20%]

(ii) satisfies the equilibrium equationT = 2
∫

A ψdA, where A is the cross-sectional
area of the shaft. [20%]

(d) A small rectangular slot is cut in the shaft as shown in cross-section view Fig. 1.
Discuss the consequences of this slot on (i) the stiffness T/β and (ii) maximum stress in
the shaft. [20%]

Fig. 1
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2 A compound cylindrical disc comprises two concentric discs nested inside each
other. Prior to assembly, the outer radius b of the inner disc (with inner radius a) is larger
by an amount δ than the inner radius of the outer disc (with outer radius c). After assembly,
a contact pressure pc is developed between the two discs. The discs are made from the
same material with Young’s modulus E and Poisson’s ratio ν. You may assume that plane
stress conditions prevail for the compound disc.

(a) Derive expressions for the circumferential strain of the compound disc. [25%]

(b) Derive an expression for the contact pressure pc. [35%]

(c) Derive the geometric condition for both discs to yield simultaneously at the interface.
You may assume that the discs yield following the Tresca yield criterion. [20%]

(d) Assuming that the discs remain elastic, determine the complete stress field within
the compound disc in terms of pc. [20%]
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3 Figure 2 shows a curved beamof constant cross-section. The outer and inner surfaces
of the beam are arcs of radii b and a, respectively with the arcs subtending an angle π/2.
The ends of the beam are subjected to a bending moment M as indicated. An Airy stress
function in the polar co-ordinate system (r, θ)

φ = Ar2 + Br2lnr + Clnr + Dθ

where A, B,C and D are constants is proposed to analyse the stress state in this beam.

(a) Calculate the stresses σrr , σθθ and σrθ in terms of the constants A, B,C and D. [20%]

(b) State the boundary conditions on σrr and σrθ and hence determine A and D in terms
of B. [30%]

(c) Using the applied moment boundary condition, write an expression for the moment
in terms constants A, B,C and D. [40%]

(d) Without further calculations explain how all the constants A, B,C and D may be
written in terms of the geometric parameters (a, b) and the loading M . [10%]

(r, θ)

M

M

b

a

Fig. 2
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4 (a) Explain briefly why the Upper Bound theorem is useful in modelling metal
indentation and forming processes. [20%]

(b) A long, smooth, rigid indenter is pressed by a force F per unit length into a block
of rigid-perfectly plastic material with a tensile yield strength σY . Assume the Tresca
yield criterion. The width of the indenter and of the block are b and w, respectively, with
w/b > 1. Figure 3 shows two simple mechanisms in terms of a geometric parameter x as
indicated. Assuming plane strain conditions:

(i) Work out an upper bound solution for the indentation force F assuming that
the collapse mode is that shown in Fig. 3(a). [30%]

(ii) Work out an upper bound solution for the indentation force F assuming that
the collapse mode is that shown in Fig. 3(b). [30%]

(iii) Plot the normalised indentation force, F/(bσY ), as a function of the width
ratio, w/b, for the two collapse modes in Fig. 3 and identify the width ratio at which
the collapse mode in Fig. 3(b) becomes the preferred collapse mode. [20%]

Fig. 3

END OF PAPER
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Engineering Tripos Part IIA          THIRD YEAR 

 

Module 3C7: Mechanics of Solids 

ELASTICITY  and  PLASTICITY  FORMULAE 

 

1. Axi-symmetric deformation :  discs, tubes and spheres 
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3. Torsion of prismatic bars 

   Prandtl stress function:     zx  (= x)  =  
y


,     zy  (= y)  =  – 

x


 

   Equilibrium:      T   =  2 
A

dA  

   Governing equation for elastic torsion:       G22 −=    where    is the angle of twist per unit length. 

 

4. Total potential energy of a body 
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         and    [D]  is the elastic stiffness matrix. 

 

5. Principal stresses and stress invariants 

 Values of the principal stresses,  P,  can be obtained from the equation 
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6. Equivalent stress and strain 
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7. Yield criteria and flow rules 

 Tresca 

 Material yields when maximum value of |1 – 2|,  |2 – 3|  or  |3 – 1|   =  Y    =   2k, and then,    
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 von Mises 
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