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1 The boundaries x = 0 and y = 0 of a thin, linear elastic quarter-space as shown in
Fig. 1, are loaded by pressure distributions p(y) on boundary x = 0 and q(x) on boundary
y = 0. These pressures are polynomial functions of the form

p(y) = p0 + p1y + p2y
2 + . . .

q(x) = q0 + q1x + q2x2 + . . .

where p0, p1, . . . and q0, q1, . . . are constants.

(a) Show that with the shear stress �xy = 0 everywhere in the quarter-space and
q(x) = 0, the loading is given by p(y) = p0 + p1y. [30%]

(b) Derive the most general form of p(y) and q(x) that results in the absence of shear
stress in any direction throughout the quarter-space. [20%]

(c) The quarter-space is now loaded by the normal pressures q(x) = 0 and p(y) = p0 in
addition to a spatially uniform shear stress �xy = p0/2 on the surfaces x = 0 and y = 0.

(i) Determine the stresses �xx , �yy and �xy at any location (x, y) within the
quarter-space. [25%]

(ii) Hence calculate the principal stresses and corresponding principal directions.
[25%]

Fig. 1
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2 Consider a scalar function �(r, ✓) = Ar2✓m in polar coordinates where A and m are
constants.

(a) Find all values of m such that � is a valid Airy stress function. [20%]

(b) Consider a thin sheet in the form of a half-space over the region 0  ✓  ⇡ as shown
in Fig. 2. We analyse this half-space using the Airy stress function � = Ar2✓.

(i) Determine the tractions along the edges ✓ = 0 and ✓ = ⇡. [20%]

(ii) Derive expressions for the stresses �xx , �yy and �xy at a location (x, y) in the
half-space. [25%]

(iii) Using the above solutions and superposition, derive an expression for the shear
stress �xy at a location (x, y) due to a normal pressure p applied on the surface y = 0
over the patch �a  x  a. [35%]

Fig. 2
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3 A long shaft (along the z� direction), with an almost square cross-section in the
x � y plane, is shown in Fig. 3. The boundaries of the cross-section are defined in terms
of a parameter c by

x4 � 6x2y2 + y4 + 5c2(x2 + y2) � 6c4 = 0.

The shaft is made from a linear elastic material with shear modulus G, and is subjected to
a torque Q about the z� axis.

(a) Show that � = �
⇥
x4 � 6x2y2 + y4 + 5c2(x2 + y2) � 6c4⇤ is a suitable Prandtl stress

function and hence express � in terms of G, c and the twist per unit length ↵ of the shaft. [25%]

(b) Determine the shear stresses �xz and �yz on the diagonal x = y and use symmetry
arguments to comment on the relation between �xz and �yz. How do these values of �xz
and �yz at (x, y) = (c, c) di�er from those for a perfectly square cross-section? [35%]

(c) Calculate �yz along y = 0 and hence determine its maximum value. [15%]

(d) Determine the torsional sti�ness Q/↵ by approximating the shape to be a square of
side 2c but using the stress function given above. [25%]

Fig. 3
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4 An infinitely large thin sheet containing a circular hole with a radius a is subjected to
a remote radial tension �rr = � and a tension �rr = �/5 at the hole boundary, where � is
a positive number; see Fig. 4. The sheet is made from an isotropic elastic perfectly-plastic
material that obeys the Tresca yield criterion and has a uniaxial tensile yield strength Y .

(a) Determine the stresses �rr and �✓✓ in terms of � assuming that the material remains
within its elastic limit. [30%]

(b) Determine � when first yield occurs. [20%]

(c) When � is increased, an annular plastic zone of radius c extends concentrically from
the edge of the hole. Determine the relationship between � and the plastic zone radius c. [50%]

2

Fig. 4
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Engineering Tripos Part IIA          THIRD YEAR 

 

Module 3C7: Mechanics of Solids 

ELASTICITY  and  PLASTICITY  FORMULAE 

 

1. Axi-symmetric deformation :  discs, tubes and spheres 
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3. Torsion of prismatic bars 

   Prandtl stress function:     zx  (= x)  =  
y


,     zy  (= y)  =  – 

x


 

   Equilibrium:      T   =  2 
A

dA  

   Governing equation for elastic torsion:       G22 −=    where    is the angle of twist per unit length. 

 

4. Total potential energy of a body 

       ∏  =  U  –  W 
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         and    [D]  is the elastic stiffness matrix. 

 

5. Principal stresses and stress invariants 

 Values of the principal stresses,  P,  can be obtained from the equation 
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6. Equivalent stress and strain 
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7. Yield criteria and flow rules 

 Tresca 

 Material yields when maximum value of |1 – 2|,  |2 – 3|  or  |3 – 1|   =  Y    =   2k, and then,    

   if  3  is the intermediate stress,   d1 : d2 : d3   =  (1 : –1 : 0) where    ≠ 0. 

 von Mises 
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3C7 numerical answers 

 

 

Question 1 

(a) 𝑝(𝑦) = 𝑝0 + 𝑝1𝑦 

(b)  

(c) (i) (𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜏𝑥𝑦) = (−𝑝0, 0, 𝑝0) 

(ii) 𝜎1 = −𝑝0/2(√2 + 1) ; 𝜎2 = −𝑝0/2(√2 − 1)  
 

Question 2:  

(a) 𝑚 = 0,1 

 

Question 3:  

 

 

Question 4: 

(b) 𝜆 = 5𝑌/9 

 

 

 


