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 EGT2 
 ENGINEERING TRIPOS PART IIA 
______________________________________________________________________ 
 
 Thursday 1 May 2014        9.30 to 11 
______________________________________________________________________ 
 
 
 Module 3C7 
 
 MECHANICS OF SOLIDS 
 
 Answer not more than three questions. 
 
 All questions carry the same number of marks. 
 
 The approximate percentage of marks allocated to each part of a question is 

indicated in the right margin. 
 
 Write your candidate number not your name on the cover sheet. 
 

STATIONERY REQUIREMENTS 
Single-sided script paper 
 
SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM 
CUED approved calculator allowed 
Attachment: 3C7 datasheet (2 pages). 
Engineering Data Book  

 
 
You may not start to read the questions printed on the subsequent 
pages of this question paper until instructed to do so. 
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1 (a) A thin flywheel of uniform thickness, with an outer diameter 𝐷 and no 
central hole, is made of material with density 𝜌, Young’s modulus 𝐸 and Poisson’s ratio 
𝜈.  When the disk is spinning with rotational speed 𝜔, the elastic stress distribution is 
given as a function of radius 𝑟 by 

𝜎!! =
𝜌𝜔!

32 3𝐷! − 12𝑟! +
𝜈𝜌𝜔!

32 𝐷! − 4𝑟!  

𝜎!! =
𝜌𝜔!

32 3𝐷! − 4𝑟! +
𝜈𝜌𝜔!

32 𝐷! − 12𝑟!  

Show that this distribution satisfies equilibrium, compatibility, and relevant boundary 
conditions.     [50%] 
 

(b) A thin flywheel is made of steel with a uniaxial yield stress of 450 MPa, 
  𝐸 = 210 GPa, 𝜈 = 0.3 and 𝜌 = 7840 kg m-3.  The flywheel has a diameter 𝐷 = 0.4  m 
and no central hole and is spinning within a case that has an inner diameter 0.401  m.  
Calculate the rotational speed at which the flywheel will first fail, either by first yielding 
(assuming a Tresca yield criterion), or by binding on its case.   [50%] 
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2 The Airy Stress Function 𝜙 
 

𝜙 = 𝐴𝑦! + 𝐵𝑥𝑦 + 𝐶𝑦! + 𝐷𝑥𝑦! 
 

has been suggested as a suitable way of finding the stresses in the cantilever shown in 
Fig. 1, of length 𝑙, depth 𝑑 and breadth 𝑏, subject to end loading with a tension 𝑇, 
bending moment 𝑀 and shear force 𝑆. 

(a) Show that 𝜙 is a suitable stress function for an elastic problem, and calculate the 
corresponding stresses.   [20%] 

(b) Find the constants 𝐴,𝐵,𝐶,𝐷 so that the stresses satisfy the boundary conditions of 
the problem.   [50%] 

(c) For the case 𝑀 = 0, 𝑇 = 0, use the solution for the stresses to calculate the 
geometry of the cantilever for which yield will occur simultaneously at 𝑦 = 0, 𝑥 = 𝑙 and 
𝑦 = 𝑑 2 , 𝑥 = 𝑙 using the Tresca yield criterion. Comment on the likely practical 
accuracy of this result.   [30%] 

 

 

 

 

 

 

 
   

 
  Fig. 1 
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3 Figure 2 shows the elliptical cross-section of a bar with maximum and minimum 
cross-sectional dimensions 2𝑎 and 2𝑏 respectively, made of a material with shear 
modulus 𝐺.  The Prandtl stress function  

𝜓 = 𝑚 1−
𝑥!

𝑎! −
𝑦!

𝑏!  

is to be used to explore the elastic torsional response of the bar, where 𝑚 is a constant. 
 

(a) Show that 𝜓 is a suitable Prandtl stress function for this problem.  [20%] 

(b) For an applied torque 𝑇, find the resultant twist/unit length of the bar. What is the 
value of the maximum shear stress within the bar in terms of the applied 𝑇? (Note that 
the integral over the area of the ellipse, 1− 𝑥! 𝑎! − 𝑦! 𝑏!   𝑑𝐴 =   𝜋𝑎𝑏 2.) [50%] 

(c) For 𝑎 ≫ 𝑏, for a given twist/unit length, compare the torque and peak shear stress 
carried by this section with the equivalent results for a rectangular section of dimension 
2𝑎×2𝑏.     [30%] 
 
 
 
 
 
 
 
 
 
  
 

        
 
    Fig. 2 
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4 An infinitely large thin sheet containing a circular hole of radius 𝑎 is subjected to a 
remote equi-biaxial stress 𝜎!! = 𝑇 as shown in Fig. 3.  The sheet is made from an elastic 
perfectly-plastic material with a uniaxial tensile strength 𝑌 and yields according to the 
Tresca yield criterion. 

(a) Show that first yield occurs at  𝑇 = 𝑌/2 and that the minimum principal stress is 
zero throughout the plate.  [30%] 

(b) The applied stress is then increased to 𝑇 > 𝑌/2 and a circular plastic zone of 
radius 𝑐 extends concentrically from the edge of the hole.  Determine an expression for 
𝑐 in terms of the applied stress 𝑇.    [50%] 

(c) Sketch the distribution of the stresses 𝜎!! and 𝜎!! for 𝑟 ≥ 𝑎 when a stress 
𝑇 = 0.75𝑌 is applied.  [20%] 

 

 

 

 
 
 
  
 
   
    
 
 
 

 
 

Fig. 3 

 

    END OF PAPER 
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Engineering Tripos Part IIA          THIRD YEAR 

 

Module 3C7: Mechanics of Solids 

ELASTICITY  and  PLASTICITY  FORMULAE 

 

1. Axi-symmetric deformation :  discs, tubes and spheres 

  Discs and tubes    Spheres 

 Equilibrium σθθ  =  
d(rσrr)

dr    +  ρω2r2    σθθ  =  
1
2r 

d(r2σrr)
dr     

 Lamé’s equations (in elasticity) σrr  =  A  –  
B
r2   –   

3+ν
8  ρω2r2   –  

Eα
r2  ⌡⌠

c

r
rTdr    σrr  =  A  –  

B
r3  

      σθθ =  A  +  
B
r2   –   

1+3ν
8  ρω2r2   +  

Eα
r2  ⌡⌠

c

r
rTdr   –  EαT  σθθ  =  A  +  

B
2r3  

 

2. Plane stress and plane strain 

Plane strain elastic constants 21 ν−
=

EE ; 
ν

νν
−

=
1

 ; ( )ναα += 1  

  Cartesian coordinates Polar coordinates 

Strains εxx  =  
∂u
∂x  εrr  =   

∂u
∂r   

  εyy  =  
∂v
∂y  εθθ  =   

u
r  +  

1
r 

∂v
∂θ  

  γxy  =  
∂u
∂y   +   

∂v
∂x  γrθ  =  

∂v
∂r   +  ∂θ  

1
r 

∂u
 –  

r
v  

 

Compatibility 
∂2γxy
∂x∂y      =     

∂2εxx
∂y2   +   

∂2εyy
∂x2   ∂θ    

∂
∂r  









r 
∂γrθ  =   ∂r   

∂
∂r  









r2 
∂εθθ  –  r  

∂εrr
∂r   +   

∂2εrr
∂θ2   

or (in elasticity) 






∂2

∂x2  +  
∂2

∂y2   (σxx + σyy)   =  0 






∂2

∂r2 + 
1
r 

∂
∂r + 

1
r2 

∂2

∂θ2  ( )σrr + σθθ  =  0  

 

Equilibrium  
∂σxx
∂x    +   

∂σxy
∂y   =  0 

∂
∂r (rσrr)  +   

∂σrθ
∂θ   –  σθθ  =  0 

   
∂σyy
∂y    +   

∂σxy
∂x   =  0  

∂σθθ
∂θ    +   

∂
∂r (rσrθ)  +  σrθ  =  0 

 

∇4φ  =  0  (in elasticity) 






∂2

∂x2  +  
∂2

∂y2  






∂2φ

∂x2  +  
∂2φ
∂y2    =  0 







∂2

∂r2 + 
1
r 

∂
∂r + 

1
r2 

∂2

∂θ2     

      ×   






∂2φ

∂r2 + 
1
r 

∂φ
∂r + 

1
r2 

∂2φ
∂θ2      =  0 

Airy Stress Function σxx  =  
∂2φ
∂y2  σrr  =  ∂r  

1
r 

∂φ
 +  ∂θ2

1
r2 

∂2φ
  

  σyy  =  
∂2φ
∂x2  σθθ  =    

∂2φ
∂r2

  σxy  =  – 
∂2φ
∂x∂y  σrθ  =  – 









∂
∂

∂
∂

θ
φ

rr
1  

 



 

3. Torsion of prismatic bars 

   Prandtl stress function:     σzx  (= τx)  =  
y∂

∂ψ ,     σzy  (= τy)  =  – 
x∂

∂ψ  

   Equilibrium:      T   =  2 ∫
A

dAψ  

   Governing equation for elastic torsion:      βψ G22 −=∇    where  β  is the angle of twist per unit length. 

 
4. Total potential energy of a body 

       ∏  =  U  –  W 

   where     U  =  12 
⌡
⌠

V
ε~

T [D] ε~ dV    ,     W  = P~  T  u~        and    [D]  is the elastic stiffness matrix. 

 

5. Principal stresses and stress invariants 

 Values of the principal stresses,  σP,  can be obtained from the equation 

       









σxx – σP σxy σxz

σxy σyy – σP σyz

σxz σyz σzz – σP

   =  0 

This is equivalent to a cubic equation whose roots are the values of the 3  principal stresses, i.e. the possible values of  σP.   

Expanding:  σP3   –  I1 σP2  +  I2σP  –  I3   =   0   where  I1  =  σxx  +  σyy  +  σzz,   

       I2   =   








σyy σyz

σyz σzz
   +   









σxx σxz

σxz σzz
  +  









σxx σxy

σxy σyy
          and           I3   =    









σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

. 

 
6. Equivalent stress and strain 

 Equivalent stress  σ̄   =   
1
2  { }(σ1 – σ2)2  +  (σ2 – σ3)2  +  (σ3 – σ1)2 1/2 

 Equivalent strain increment  dε̄    =  
2
3  { }dε12  +  dε22  +  dε32 1/2 

 

 

7. Yield criteria and flow rules 

 Tresca 

 Material yields when maximum value of |σ1 – σ2|,  |σ2 – σ3|  or  |σ3 – σ1|   =  Y    =   2k, and then,    

   if  σ3  is the intermediate stress,   dε1 : dε2 : dε3   =  λ(1 : –1 : 0) where  λ  ≠ 0. 

 von Mises 

 Material yields when, (σ1 – σ2)2  +  (σ2 – σ3)2  +  (σ3 – σ1)2   =   2Y2  =  6k2, and then 

    
dε1
σ'1

      =      
dε2
σ'2

     =     
dε3
σ'3

       =     
dε1 – dε2
σ1 – σ2

   =    
dε2 – dε3
σ2 – σ3

    =     
dε3 – dε1
σ3 – σ1

    =   λ   =   
3
2 

dε̄
σ̄       . 

SDG, October 2013 
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