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EGT2
ENGINEERING TRIPOS PART IIA

Tuesday 27 April 2021 9.00 to 10.40

Module 3C7

MECHANICS OF SOLIDS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet and at the top of
each answer sheet.

STATIONERY REQUIREMENTS
Write on single-sided paper.

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed.
Attachment: 3C7 formulae sheet (2 pages).
You are allowed access to the electronic version of the Engineering Data Books.

10 minutes reading time is allowed for this paper at the start of
the exam.
The time taken for scanning/uploading answers is 15 minutes.

Your script is to be uploaded as a single consolidated pdf
containing all answers.
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1 An infinite sheet with a circular hole of radius 0 is loaded by an axisymmetric remote
tensile stress f0. The sheet material is elastic-perfectly plastic with a tensile yield strength
. , and obeys the Tresca yield criterion.

(a) Assume that the sheet thickness is much less than 0.

(i) Calculate the value of f0 at which yielding is initiated in the plate. [20%]

(ii) If the plate is loaded by a stress f∗ which is greater than the critical value to
initiate yield, calculate the radius 2 of the plastic zone. [40%]

(b) If the thickness of the plate is much greater than 0, calculate the radius 2 of the
plastic zone in terms of the remote stress f∗. [40%]
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2 The superposition of two Airy stress functions is to be used to analyse the plane
stress elastic response of a semi-infinite plate to pressure loading on a patch, as sketched
in Fig. 1(b).

(a) Consider initially the Airy stress function q = �A2\ for the plate shown in Fig. 1(a).

(i) Show that q is a valid Airy stress function for an elastic system. [10%]

(ii) In terms of �, calculate the stress components derived from q in polar co-
ordinates. Calculate the magnitude of the equilibrium tractions applied on the
boundary plane H = 0, as sketched in Fig. 1(a). [20%]

(iii) Find fGG , fHH, fGH in the plate as a function of A and \. Sketch a graph of the
variation of fGH with G on the plane H = 0. [30%]

(b) Using superposition of stress functions with an origin at G = +0 and G = −0, or
otherwise, calculate fGH on the plane H = 0 when the plate is loaded by a normal pressure
? over the region −0 ≤ G ≤ 0, as shown in Fig. 1(b). Sketch a graph of the variation of
fGH with G on the plane H = 0. [40%]
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3 Consider axial torsion of an elastic shaft with the equilateral triangular cross section
shown in Fig. 2.

(a) If V is the twist per unit length of the shaft, show that the in-plane displacements D
and E in the G and H directions respectively obey

mD

mI
= −VH ;

mE

mI
= VG. [10%]

(b) The stresses in the shaft can be derived from the Prandtl stress function

k =
�V02
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where 20/

√
3 is the side-length of the triangular cross-section, � is the shear modulus of

the material and V is the twist per unit length of the shaft.

(i) Show that k satisfies the necessary boundary conditions. [10%]

(ii) Calculate the stresses fHI and fGI in the shaft, and show that these are an
elastic solution. [40%]

(c) The shear strains in the shaft are given by

WIG =
mD

mI
+ mF
mG

; WIH =
mE

mI
+ mF
mH
.

Calculate the out-of-plane displacement field F. [40%]
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4 A rod of elastic-perfectly plastic metal of rectangular cross-section is compressed
in plane strain between two rigid dies. The rod has thickness ℎ and width !, as shown
in cross-section in Fig. 3(a). The force applied per unit length along the rod is �. The
metal is isotropic and incompressible, with a flow stress in shear of magnitude : . Friction
prevents any slip between the dies and the metal.

(a) By considering the tangential velocity discontinuities shown by dashed lines in
Fig. 3(b), calculate an upper bound for the value of � required to deform the rod. [30%]

(b) An alternative velocity field is given by

¤D = 2G

¤E = −2H

where ¤D and ¤E are the velocities in the G and H directions respectively, and 2 is a constant.

(i) Show that the strain rate field is uniform. By assuming a Tresca yield criterion
and considering the normality criterion, show that the rate of energy dissipated per
unit volume is given by

¤F = 2:2 [30%]

(ii) Use this strain rate field to find an alternative upper bound for �. Note that a
velocity discontinuity is necessary at H = ±ℎ/2. [40%]
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Engineering Tripos Part IIA THIRD YEAR 

Module 3C7: Mechanics of Solids 

ELASTICITY  and  PLASTICITY  FORMULAE 

1. Axi-symmetric deformation :  discs, tubes and spheres

Discs and tubes Spheres 

Equilibrium σθθ  =  
d(rσrr)

dr + ρω2r2 σθθ  =  
1
2r 

d(r2σrr)
dr

Lamé’s equations (in elasticity) σrr  =  A  –  
B
r2   –  

3+ν
8   ρω2r2   –  

Eα
r2  ⌡⌠

c

r
rTdr σrr  =  A  –  

B
r3 

σθθ =  A  +  
B
r2   –

1+3ν
8  ρω2r2   +  

Eα
r2  ⌡⌠

c

r
rTdr   –  EαT σθθ  =  A  +  

B
2r3 

2. Plane stress and plane strain

Plane strain elastic constants 21 ν−
= EE ; 

ν
νν
−

=
1

; ( )ναα += 1

Cartesian coordinates Polar coordinates 

Strains εxx  =  
∂u
∂x εrr  =  

∂u
∂r 

εyy  =  
∂v
∂y εθθ  =  

u
r   +  

1
r 
∂v
∂θ 

γxy  =  
∂u
∂y   +  

∂v
∂x γrθ  =  

∂v
∂r   +  

1
r 
∂u
∂θ   –  

r
v

Compatibility 
∂2γxy
∂x∂y      =    

∂2εxx
∂y2    +

∂2εyy
∂x2

∂
∂r  ⎩

⎨
⎧

⎭
⎬
⎫

r
∂γrθ
∂θ  =   

∂
∂r  

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

r2 
∂εθθ
∂r   – r

∂εrr
∂r    +

∂2εrr
∂θ2

or (in elasticity 

with no thermal strains  
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂2

∂x2  + ∂
2

∂y2   (σxx + σyy)   =  0
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂2

∂r2 + 
1
r 
∂
∂r + 

1
r2 
∂2

∂θ2  ( )σrr + σθθ  =  0

or body forces) 

Equilibrium 
∂σxx
∂x +

∂σxy
∂y    =  0

∂
∂r (rσrr)  +  

∂σrθ
∂θ    –  σθθ  =  0

∂σyy
∂y +

∂σxy
∂x    =  0

∂σθθ
∂θ +

∂
∂r (rσrθ)   +  σrθ  =  0

∇4φ  =  0  (in elasticity)
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂2

∂x2  +  
∂2

∂y2  
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂2φ

∂x2  + ∂
2φ
∂y2    =  0

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂2

∂r2 + 
1
r 
∂
∂r + 

1
r2 
∂2

∂θ2   

×   
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂2φ

∂r2 + 
1
r 
∂φ
∂r + 

1
r2 
∂2φ
∂θ2      =  0 

Airy Stress Function σxx  =  
∂2φ
∂y2 σrr  =  

1
r 
∂φ
∂r   +  

1
r2 
∂2φ
∂θ2

σyy  =  
∂2φ
∂x2 σθθ  =  

∂2φ
∂r2 

σxy  =  – 
∂2φ
∂x∂y σrθ  =  –

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

∂
∂

θ
φ

rr
1



3. Torsion of prismatic bars

Prandtl stress function:     σzx  (= τx)  =
y∂

∂ψ ,     σzy  (= τy)  =  –
x∂

∂ψ

Equilibrium:      T   =  2 ∫
A

dAψ

Governing equation for elastic torsion:      βψ G22 −=∇    where  β  is the angle of twist per unit length.

4. Total potential energy of a body

∏  =  U  –  W 

where     U  =  
1
2
⌡⎮
⌠

V
ε~

T [D] ε~ dV    ,     W  = P~  T u~  and    [D]  is the elastic stiffness matrix. 

5. Principal stresses and stress invariants

Values of the principal stresses,  σP,  can be obtained from the equation

⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪σxx – σP σxy σxz

σxy σyy – σP σyz

σxz σyz σzz – σP

   =  0

This is equivalent to a cubic equation whose roots are the values of the 3  principal stresses, i.e. the possible values of  σP.

Expanding:  σP3   –  I1 σP2  +  I2σP  –  I3   =   0   where  I1  =  σxx  +  σyy  +  σzz,

       I2   =   
⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪σyy σyz

σyz σzz
 +  

⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪σxx σxz

σxz σzz
 +  

⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪σxx σxy

σxy σyy
 and           I3   =   

⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

 . 

6. Equivalent stress and strain

Equivalent stress  σ̄   =
1
2  { }(σ1 – σ2)2  +  (σ2 – σ3)2  +  (σ3 – σ1)2  1/2

Equivalent strain increment  dε̄    =
2
3  { }dε12  +  dε22  +  dε32  1/2

7. Yield criteria and flow rules

Tresca 

Material yields when maximum value of |σ1 – σ2|,  |σ2 – σ3|  or  |σ3 – σ1|   =  Y    =   2k, and then,

 if  σ3  is the intermediate stress,   dε1 : dε2 : dε3   =  λ(1 : –1 : 0) where  λ  ≠ 0.

von Mises 

Material yields when, (σ1 – σ2)2  +  (σ2 – σ3)2  +  (σ3 – σ1)2   =   2Y2  =  6k2, and then

dε1
σ'1

      =
dε2
σ'2

      =
dε3
σ'3

 =    
dε1 – dε2
σ1 – σ2

    =
dε2 – dε3
σ2 – σ3

    =
dε3 – dε1
σ3 – σ1

     =   λ   =   
3
2

dε̄
σ̄  . 
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