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EGT2
ENGINEERING TRIPOS PART IIA

Tuesday 24 April 2018 9.30 to 11.10

Module 3C7

MECHANICS OF SOLIDS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Attachment: 3C7 formulae sheet (2 pages)
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 A uniform bar of elliptical cross section, with semi-major axis a and semi-minor
axis b, is made from a linear elastic solid of shear modulus G. A Cartesian co-ordinate
system (x,y) is introduced in the bar cross-section such that the surface of the bar satisfies
the relation:

x2

a2 +
y2

b2 −1 = 0.

The Prandtl stress function
ψ(x,y) = A+Bx2 +Cy2

is a candidate for determining the torsional response of the bar, where A, B and C are
constants.

(a) Show that ψ is a suitable stress function for this problem. [30%]

(b) Determine the torque T in terms of G, a, b and the twist per unit length, β , and
thereby determine the shear stress distribution along the minor axis of the ellipse. [50%]

Note: You may make use of the below integral over the ellipse:

∫∫ (
1− x2

a2 − y2

b2

)
dA =

πab
2

.

(c) Make use of the above results to determine the torsional rigidity T/β for the
elliptical bar when it contains a central elliptical hole of semi-major axis a/2 and semi-
minor axis b/2. [20%]
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2 (a) Show that

φ(r,θ) =C1 sin2θ +C2θ +C3 cos2θ (1)

is a valid Airy stress function in polar coordinates (r,θ). [20%]

(b) Figure 1 is a side view of a tapered bean, of unit width w into the plane of the paper,
that is loaded at each end by a moment M. It has been proposed that the stress function in
eq. (1) can be used to determine the stress field in the beam.

(i) Write down the stress boundary conditions to be satisfied on the top and
bottom faces. [10%]

(ii) Show that stress derived from φ(r,θ) satisfies these boundary conditions and
hence determine the relation between C1 and C2, and the value of C3. [25%]

(c) For the applied moment M, determine the stresses in the beam as a function of r
and θ . [20%]

(d) Show that for a long thin beam (where α � 1), the stresses σrr are those that would
be expected from simple beam theory. [25%]

r 2a

a

b

q

MM

Fig. 1
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3 (a) Discuss the conditions under which the in-plane stress state in a thin circular
disk made from an elastic solid has circular symmetry. [15%]

(b) Starting from the general expressions of equilibrium provided on the datasheet,
show that for a thin circular disk with circular symmetry, the equilibrium equation
expressed in polar coordinates (r,θ) is given by

r
∂ σrr
∂ r

= σθθ −σrr,

where σrr and σθθ are the radial and hoop stresses, respectively. [15%]

(c) Starting from the general compatibility equations provided on the datasheet, show
that for the circular disk described in (b), the compatibility equations reduce to

r
∂ εθθ

∂ r
= εrr − εθθ ,

where εrr and εθθ are the radial and hoop strains, respectively. [25%]

(d) Consider a thin circular plate with a central hole of radius a. The plate is
made of material with Young’s modulus E, Poisson’s ratio ν and coefficient of thermal
expansion α . The plate is initially stress-free at a uniform temperature T0. It is then heated
axisymmetrically to a temperature T (r). Derive the stress versus strain relationship for
the heated plate in polar coordinates.

[15%]

(e) With u denoting the radial displacement, the equilibrium equation for the hollow
circular plate described in (d) is expressed as:

∂

∂ r

[
1
r

∂ (ur)
∂ r

]
= (1+ν)α

∂ (T −T0)

∂ r
.

Solve for the displacements in the heated plate. [30%]

Page 4 of 6



Version GNW/2

4 (a) A thin-walled tube is subjected to combined uniform axial tension and torsion.
The axial stress is σ =Y/2 where Y is the tensile yield strength. The Tresca yield criterion
is assumed. Find the magnitude of the shear stress τ on the cross section due to the applied
torque at which the tube begins to yield, and determine the corresponding principal strain
increments. [20%]

(b) A long cylindrical hole with internal radius a is bored vertically into the ground and
subjected to an internal pressure of p. The ground can be approximated as a homogeneous
elastic perfectly-plastic material of tensile yield strength Y and yields according to the
Tresca criterion. The deformation of the ground is to be assumed as plane strain in the
depth direction z.

(i) Determine the stresses σrr, σθθ and σzz for an elastic response when first
yield occurs. [40%]

(ii) When the internal pressure is increased, a circular plastic zone of radius
c extends concentrically from the edge of the hole. Determine the relationship
between the internal pressure p and the plastic zone radius c. [40%]

END OF PAPER
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Engineering Tripos Part IIA          THIRD YEAR 

 

Module 3C7: Mechanics of Solids 

ELASTICITY  and  PLASTICITY  FORMULAE 

 

1. Axi-symmetric deformation :  discs, tubes and spheres 

  Discs and tubes    Spheres 

 Equilibrium σθθ  =  
d(rσrr)

dr    +  ρω2r2    σθθ  =  
1
2r 

d(r2σrr)
dr     

 Lamé’s equations (in elasticity) σrr  =  A  –  
B
r2   –  

3+ν
8   ρω2r2   –  

Eα
r2  ⌡⌠

c

r
rTdr    σrr  =  A  –  

B
r3  

      σθθ =  A  +  
B
r2   –  

1+3ν
8   ρω2r2   +  

Eα
r2  ⌡⌠

c

r
rTdr   –  EαT  σθθ  =  A  +  

B
2r3  

2. Plane stress and plane strain 

Plane strain elastic constants 21 ν−
= EE ; 

ν
νν
−

=
1

 ; ( )ναα += 1  

  Cartesian coordinates Polar coordinates 

Strains εxx  =  
∂u
∂x  εrr  =  

∂u
∂r   

  εyy  =  
∂v
∂y  εθθ  =  

u
r   +  

1
r 
∂v
∂θ  

  γxy  =  
∂u
∂y   +  

∂v
∂x  γrθ  =  

∂v
∂r   +  

1
r 
∂u
∂θ   –  

r
v  

 

Compatibility 
∂2γxy
∂x∂y      =    

∂2εxx
∂y2    +   

∂2εyy
∂x2   

∂
∂r  ⎩

⎨
⎧

⎭
⎬
⎫

r 
∂γrθ
∂θ     =   

∂
∂r  

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

r2 
∂εθθ
∂r    –  r 

∂εrr
∂r    +   

∂2εrr
∂θ2   

 

or (in elasticity  

with no thermal strains  
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂2

∂x2  +  
∂2

∂y2   (σxx + σyy)   =  0 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂2

∂r2 + 
1
r 
∂
∂r + 

1
r2 
∂2

∂θ2  ( )σrr + σθθ  =  0  

or body forces) 

Equilibrium  
∂σxx
∂x    +  

∂σxy
∂y    =  0 

∂
∂r (rσrr)  +  

∂σrθ
∂θ    –  σθθ  =  0 

   
∂σyy
∂y    +  

∂σxy
∂x    =  0  

∂σθθ
∂θ    +  

∂
∂r (rσrθ)   +  σrθ  =  0 

 

∇4φ  =  0  (in elasticity) 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂2

∂x2  +  
∂2

∂y2  
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂2φ

∂x2  +  
∂2φ
∂y2    =  0 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂2

∂r2 + 
1
r 
∂
∂r + 

1
r2 
∂2

∂θ2     

      ×   
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂2φ

∂r2 + 
1
r 
∂φ
∂r + 

1
r2 
∂2φ
∂θ2      =  0 

Airy Stress Function σxx  =  
∂2φ
∂y2  σrr  =  

1
r 
∂φ
∂r   +  

1
r2 
∂2φ
∂θ2  

  σyy  =  
∂2φ
∂x2  σθθ  =  

∂2φ
∂r2  

  σxy  =  – 
∂2φ
∂x∂y  σrθ  =  – 

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

∂
∂

θ
φ

rr
1  



 

 

3. Torsion of prismatic bars 

   Prandtl stress function:     σzx  (= τx)  =  
y∂

∂ψ ,     σzy  (= τy)  =  – 
x∂

∂ψ  

   Equilibrium:      T   =  2 ∫
A

dAψ  

   Governing equation for elastic torsion:      βψ G22 −=∇    where  β  is the angle of twist per unit length. 

 
4. Total potential energy of a body 

       ∏  =  U  –  W 

   where     U  =  
1
2 
⌡⎮
⌠

V
ε~

T [D] ε~ dV    ,     W  = P~  T u~         and    [D]  is the elastic stiffness matrix. 

 

5. Principal stresses and stress invariants 

 Values of the principal stresses,  σP,  can be obtained from the equation 

       

⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪σxx – σP σxy σxz

σxy σyy – σP σyz

σxz σyz σzz – σP

   =  0 

This is equivalent to a cubic equation whose roots are the values of the 3  principal stresses, i.e. the possible values of  σP.   

Expanding:  σP3   –  I1 σP2  +  I2σP  –  I3   =   0   where  I1  =  σxx  +  σyy  +  σzz,   

       I2   =   
⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪σyy σyz

σyz σzz
   +  

⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪σxx σxz

σxz σzz
   +  

⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪σxx σxy

σxy σyy
          and           I3   =   

⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

 . 

6. Equivalent stress and strain 

 Equivalent stress  σ̄   =  
1
2  { }(σ1 – σ2)2  +  (σ2 – σ3)2  +  (σ3 – σ1)2  1/2 

 Equivalent strain increment  dε̄    = 
2
3  { }dε12  +  dε22  +  dε32  1/2 

 

7. Yield criteria and flow rules 

 Tresca 

 Material yields when maximum value of |σ1 – σ2|,  |σ2 – σ3|  or  |σ3 – σ1|   =  Y    =   2k, and then,    

   if  σ3  is the intermediate stress,   dε1 : dε2 : dε3   =  λ(1 : –1 : 0) where  λ  ≠ 0. 

 von Mises 

 Material yields when, (σ1 – σ2)2  +  (σ2 – σ3)2  +  (σ3 – σ1)2   =   2Y2  =  6k2, and then 

    
dε1
σ'1

      =     
dε2
σ'2

      =     
dε3
σ'3

       =    
dε1 – dε2
σ1 – σ2

    =    
dε2 – dε3
σ2 – σ3

    =    
dε3 – dε1
σ3 – σ1

     =   λ   =   
3
2 

dε̄
σ̄       . 
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