EGT2 ENGINEERING TRIPOS PART IIA

Tuesday 27 April 2021 1.30 to 3.10

Module 3C8

MACHINE DESIGN

Answer not more than **three** questions.

All questions carry the same number of marks.

The *approximate* percentage of marks allocated to each part of a question is indicated in the right margin.

Write your candidate number <u>not</u> your name on the cover sheet and at the top of each answer sheet.

STATIONERY REQUIREMENTS

Write on single-sided paper.

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM

CUED approved calculator allowed. Attachment: Module 3C8 Machine Design data sheet (12 pages). You are allowed access to the electronic version of the Engineering Data Books.

10 minutes reading time is allowed for this paper at the start of the exam.

The time taken for scanning/uploading answers is 15 minutes.

Your script is to be uploaded as a single consolidated pdf containing all answers.

1 A railway vehicle travels along a straight, horizontal railway track. The wheels of the vehicle may be idealised as cylindrical in profile with radius r_w . A load P is carried by each wheel and the contact modulus is E^* .

(a) Ignoring any edge effects, sketch the contact pressure distribution, marking any salient points, for the following models of the railhead geometry:

(i) i	flat, and of width L transverse to the direction of travel;	[5%]
-------	---	------

(ii) a cylinder of radius r_w , with the axis of the cylinder aligned along the direction of the track; [5%]

(iii) a cylinder of radius $3r_w$, with the same orientation as part (ii). [10%]

(b) Describe and compare the stress distributions acting at the surfaces of both the wheel and rail for the case described in part (a)(ii). Assume that the wheel and rail are different grades of steel. How would your answer vary if the rails are made of aluminium alloy? [20%]

(c) This part of the question considers the contact stiffness between the wheel and the railhead. Assume that the railhead is flat and of width L.

(i) Why is the data sheet approximation for the approach of centres for line contact not useable for considering the approach of a cylinder to a flat surface? [5%]

(ii) Find an expression for the contact stiffness in terms of E^* , r_w , P and L, using the following approximation for the approach (symbols as defined on the data sheet):

$$\delta \approx \frac{4P'}{\pi} \left[\frac{2}{E^*} \left(\ln \left(\frac{4R}{b} \right) - \frac{1}{2} \right) \right]$$

[35%]

(iii) The vehicle travels along a straight and level track. Its mass of 100 tonnes is spread equally over 12 wheels of radius 0.5 m. The wheel-rail contact width L is 100 mm and $E^* = 115$ GPa. Calculate the contact stiffness. [10%]

(iv) The vehicle now travels along a curved section of track. Describe qualitativelyhow this will affect the contact stiffness. [10%]

2 (a) Two metal spheres of radii R_1 and R_2 are pressed together to form a nominal point contact. The spheres have Young's moduli E_1 and E_2 and Poisson's ratios v_1 and v_2 , respectively.

(i) Explain why elastic contact between the spheres can be described by an effective curvature R and contact modulus E^* as defined on the data sheet. [10%]

(ii) Show that, for elastic contact, the approach of centres of the two spheres is proportional to the square of the mean contact pressure, and derive an expression for the constant of proportionality in terms of *R* and E^* . [10%]

(iii) Sketch a master curve, using appropriate dimensionless groups, showing the expected variation of mean contact pressure with the approach of centres, annotating the sketch to describe salient features. [25%]

(b) Two meshing steel spur gears, with 17 and 51 teeth, fail due to surface failure at a pinion torque T_f . The gears have standard teeth with the addendum equal to the module and with a pressure angle $\phi = 20^{\circ}$. Assuming the same failure mechanism and that there is no load sharing between tooth contacts:

(i) calculate the scaling factor if geometrically similar gears, with all dimensions scaling including the module and addendum, are to carry an increased pinion torque of $2T_f$ without failing; [25%]

(ii) calculate the safe pinion torque in terms of T_f for similar gears with all dimensions scaling by a factor of 19/17, except the module and addendum which are both unchanged. [30%]

Version MPFS/6

Figure 1 shows the output characteristics of a cyclist, with the mean torque *T* applied by the cyclist at the crank a function of the angular speed ω of the crank and the percentage effort of the cyclist. The resistance to motion *F* (in N) of the cyclist on level ground is given by $F = 0.5V^2$, where *V* is the speed of the cyclist in m s⁻¹. The crank drives the rear wheel of radius R = 0.35 m through a chain drive system, with the ratio Ω/ω of the wheel speed to the crank speed denoted by *G*. The combined mass *m* of the cyclist and bicycle is 100 kg and gravitational acceleration *g* can be taken as 10 m s⁻².

You **must** include with your solution a sketched copy of Fig. 1, which can be used as appropriate to give answers of acceptable accuracy.

(a) Find the maximum speed on level ground that the cyclist can travel at with 100% effort and G = 3. [30%]

(b) Find the maximum slope that the cyclist can climb with 100% effort at a speed of 5 m s^{-1} with G = 3. [20%]

(c) Estimate the minimum percentage effort that the cyclist needs to exert at a speed of 5 m s^{-1} on level ground, and the corresponding value of *G* required. [20%]

(d) An electric motor, with output characteristics given in Fig. 2, applies a torque T_m to the crank as a function of the crank speed ω . Find the maximum speed that the cyclist can now travel at on level ground at 100% effort, and the corresponding value of G. [20%]

(e) Outline different ways in which such a hybrid bicycle system with electrical and human power inputs could be designed, commenting on relevant machine design issues. [10%]

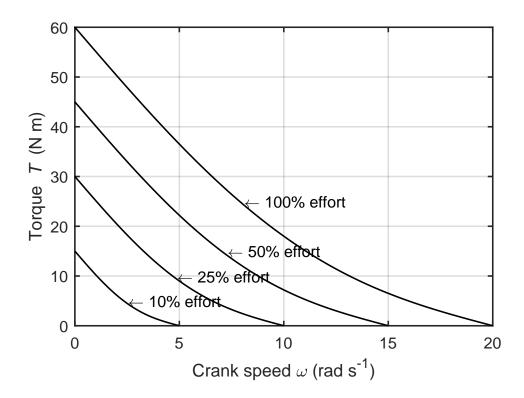


Fig. 1

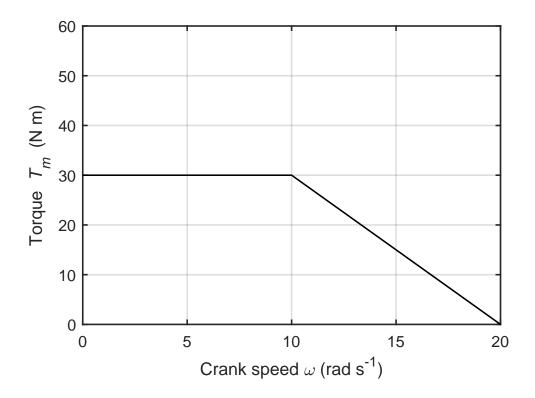


Fig. 2

Page 5 of 6

4 (a) (i) What is meant by the term 'interference' as applied to spur gear tooth contacts? [5%]

(ii) Consider a spur gear with N involute teeth and pitch circle radius r meshing with a similar gear with 3N teeth. The pressure angle $\phi = 20^{\circ}$ and the addendum a equals the module m for both gears. Derive an expression for the number of teeth N required on the smaller gear to avoid interference. [15%]

(b) Suggest gear design solutions for the following applications, outlining key features of the gear design and explaining the reasons for the choice of solution:

(i)	a sliding gate	opening me	chanism drive	n by an electric	motor;	[10%]
-----	----------------	------------	---------------	------------------	--------	-------

- (ii) a heating control valve driven by a synchronous electric motor; [10%]
- (iii) an oscillating water sprinkler system driven by flow of water. [10%]

(c) An epicyclic gear has 20 teeth on its sun wheel and 25 teeth on each of its planet wheels. An input torque T_i is applied to the sun wheel shaft, which rotates at speed Ω_i . Torque T_i and speed Ω_i are positive in the same direction.

(i) With the annulus held fixed, what is the output torque on the planet carrier and the restraint torque on the annulus, assuming no losses? [20%]

(ii) The annulus now rotates at 20% of the speed of the sun wheel, but in the opposite direction. Assuming an overall efficiency of 95% and that the torque on the annulus is unchanged from part (c)(i), find the output torque on the planet carrier in terms of T_i . [30%]

END OF PAPER

Module 3C8 Data Sheet

ELASTIC CONTACT STRESS FORMULAE

Suffixes 1, 2 refer to the two bodies in contact.

Effective curvature
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

Contact modulus
$$\frac{1}{E^*} = \frac{1 - v_1^2}{E_1} + \frac{1 - v_2^2}{E_2}$$

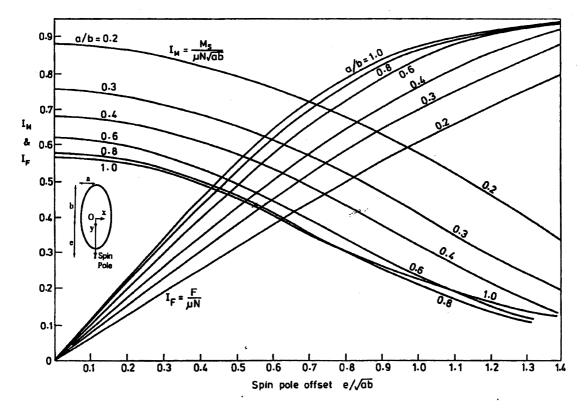
where R_1, R_2 are the radii of curvature of the two bodies (convex positive).

where E_1, E_2 and v_1, v_2 are Young's moduli and Poisson's ratios

	Line contact width 2b; load P' per unit length	Circular contact diameter 2 <i>a</i> ; load <i>P</i>
Semi contact width or contact radius	$b = 2\left\{\frac{P'R}{\pi E^*}\right\}^{1/2}$	$a = \left\{\frac{3PR}{4E^*}\right\}^{1/3}$
Maximum contact pressure ('Hertz stress')	$p_0 = \left\{\frac{P'E^*}{\pi R}\right\}^{1/2}$	$p_0 = \frac{1}{\pi} \left\{ \frac{6PE^{*2}}{R^2} \right\}^{1/3}$
Approach of centres	$\delta = \frac{2P'}{\pi} \left[\frac{1 - v_1^2}{E_1} \left\{ \ln\left(\frac{4R_1}{b}\right) - \frac{1}{2} \right\} + \frac{1 - v_2^2}{E_2} \left\{ \ln\left(\frac{4R_2}{b}\right) - \frac{1}{2} \right\} \right]$	$\delta = \frac{a^2}{R} = \frac{1}{2} \left\{ \frac{9}{2} \frac{P^2}{E^{*2} R} \right\}^{1/3}$
Mean contact pressure	$\overline{p} = \frac{P'}{2b} = \frac{\pi}{4} p_0$	$\overline{p} = \frac{P}{\pi a^2} = \frac{2}{3} p_0$
	$\tau_{\max} = 0.300 p_0$ at $x = 0, z = 0.79b$	$\tau_{\text{max}} = 0.310 p_0$ at $r = 0, z = 0.48 a$ for $v = 0.3$
Maximum tensile		1

Maximum tensile stress

zero

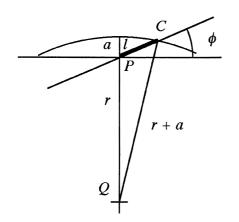

 $\frac{1}{3}(1-2\nu)p_0$ at r = a, z = 0

Mildly elliptical contacts

If the gap at zero load is $h = \frac{1}{2}Ax^2 + \frac{1}{2}By^2$ and 0.2 < A/B < 5 then ratio of semi-axes $b/a \cong (A/B)^{2/3}$

To calculate the contact area or Hertz stress use the circular contact equations with $R = (AB)^{-1/2}$ or better $R_e = [AB(A+B)/2]^{-1/3}$ For approach use circular contact equation with $R = (AB)^{-1/2}$ (not R_e)

Hertzian contact frictional losses


INVOLUTE GEARING

Spur gears

pitch cylinder radii rbase cylinder radii r_b addendum cylinder radii r_a number of teeth Naddendum $a = r_a - r$ pressure angle ϕ

circumferential pitch $p = 2\pi r/N$ base pitch $p_b = p \cos \phi$ module $m = p / \pi = 2r / N$ ratio of contact r_c radius of curvature at pitch point $\rho = r \sin \phi$

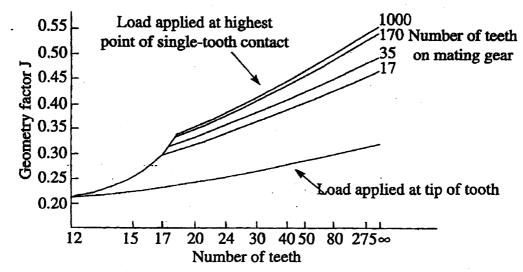
Path of contact

 $l = \left\{ r^2 \sin^2 \phi + a(2r+a) \right\}^{1/2} - r \sin \phi$ For a standard 20° spur wheel with N

teeth of module m this becomes

$$\frac{l}{m} = \left(0.02924N^2 + N + 1\right)^{1/2} - 0.1710N$$

Standard tooth formsAddendum a = m, Dedendum $= \frac{7}{6}m$, pressure angle $= 20^{\circ}$.Modules:0.3 - 1.0 mm in 0.1 mm steps1.0 - 4.0 mm in 0.25 mm steps4.0 - 7.0 mm in 0.5 mm steps7.0 - 16.0 mm in 1.0 mm steps16.0 - 24.0 mm in 2.0 mm steps24.0 - 45.0 mm in 3.0 mm steps45.0 - 75.0 mm in 5.0 mm steps


Friction in spur gears

$$\frac{\text{average friction loss}}{\text{power transmitted}} \approx \mu \pi \left\{ \frac{1}{N_1} + \frac{1}{N_2} \right\}$$

Tooth failure

Allowable bending stress σ_b according to AGMA guidelines given by $\sigma_b = \frac{P_T}{Jm}$

where P'_T is force per unit face-width acting tangentially to pitch circle and J given in the figure below for 20° spur gears. Typical values of σ_b shown in table.

Typical allowable	e tooth stresses	(AGMA)

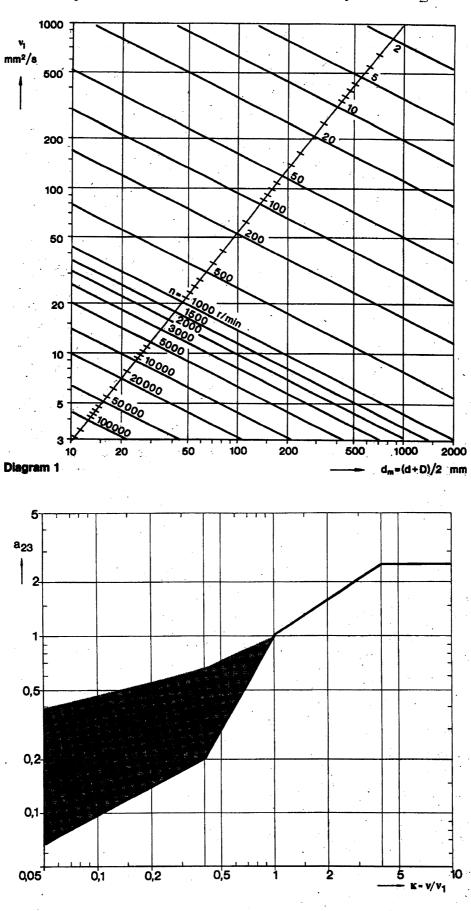
Material	Condition	Bending fatigue strength σ_b (MPa)	Surface fatigue strength σ_s (MPa)
Steel	Through hardened and tempered	170-390	590-1200
51001	Carburised and case hardened	380-480	1250-1550
Cast iron	As cast	69-90	450-590
Nodular iron	Quenched, annealed and tempered	150-300	500-800
Malleable iron	Pearlitic	70-145	500-650

EPICYCLIC SPEED RULE

$$\omega_{\rm s} = (1+R)\omega_{\rm c} - R\omega_{\rm a}$$
 where $R = \frac{A}{S}$

ROLLING ELEMENT BEARINGS

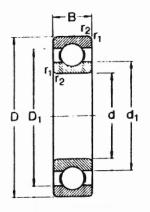
Fatigue life

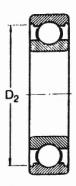

$L = a_1 a_{23} (C/P)^p$	p = 3 for ball and 10/3 for roller bearing						
Fatigue probability %	10	5	4	3	2	1	

Life adjust factor a_1 1 0.62 0.53 0.44 0.33 0.21

Bearing choice

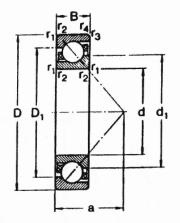
The information on the following pages concerning loads, viscosities and standard bearing sizes and ratings is extracted from the SKF General Bearing Catalogue and is copied with permission. It is SKF copyright and is not to be further reproduced.


MPFS, DJC, JAW November 07

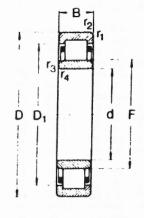


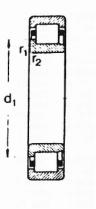
Required viscosities and the effect of viscosity ratio on a_{23}

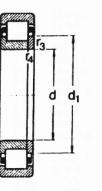
Deep groove ball bearings single row d 35-55 mm



With full outer ring shoulders With recessed outer ring shoulders


Princ lime	ipal nsions		Basic load dynamic	ratings static	Fatigue load limit	Speed ratings Lubrication grease oil		Mass	Designation
1	D	в	С	C ₀	Pu	5			
m		. 4	N		N	r/min		kg	-
		2.1.2.4	. 750	0.000	166	13 000	16 000	0.030	61807
15	47	7	4 750	3 200 6 200	290	11 000	14 000	0,080	61907
	55	10	9 560		375	10 000	13 000	0.11	16007
	62	9	12 400	8 150	440	10 000	13 000	0.16	6007
	62	14	15 900	10 200	655	9 000	11 000	0,29	6207
	72	17	25 500	15 300	815	8 500	10 000	0,46	6307
	80	21	33 200	19 000	1 290	7 000	8 500	0,95	6407
	10 0	25	55 300	31 000	1 290	1000	0.500	0,00	
		-	4.040	2 450	186	11 000	14 000	0.034	61808
10	52	7	4 940	3 450	425	10 000	13 000	0,12	61908
	62	12	13 800	9 300	425	9 500	12 000	0.13	16008
	68	9	13 300	9 150	490	9 500	12 000	0,19	6008
	68	15	16 800	11 600		8 500	10 000	0.37	6208
	80	18	30 700	19 000	800 1 020	7 500	9 000	0.63	6308
	90	23	41 000	24 000	1 530	6 700	8 000	1,25	6408
	110	27	63 700	36 500	1 530	6700	0 000	1,20	• • • • •
-	50	7	6 050	4 300	228	9 500	12 000	0.040	61809
5	58		10 100	6 700	285	9 000	11 000	0.14	61909
	68	12	15 600	10 800	520	9 000	11 000	0.17	16009
	75	10		14 600	640	9 000	11 000	0,25	6009
	75	16	20 800	21 600	915	7 500	9 000	0,41	6209
	85	19	33 200	31 500	1 340	6 700	8 000	0.83	6309
	100	25	52 700		1 900	6 000	7 000	1,55	6409
	120	29	76 100	45 000	1 900	0 000	1 000	1,00	
	65	7	6 240	4 750	250	9 000	11 000	0.052	61810
50		-	14 600	10 400	500	8 500	10 000	0,14	61910
	72	12			560	8 500	10 000	0.18	16010
	80	10	16 300	11 400		8 500	10 000	0,26	6010
	80	16	21 600	16 000	710		8 500	0,26	6210
	90	20	35 100	23 200	980	7 000		1.05	6310
	110	27	61 800	38 000	1 600	6 300	7 500 6 300	1,90	6410
	130	31	87 100	52 000	2 200	5 300	0 300	1,90	0410
	70	9	8 320	6 200	325	8 500	10 000	0.083	61811
55	72			11 400	560	8 000	9 500	0,19	61911
	80	13	15 900	14 000	695	7 500	9 000	0.26	16011
	90	11	19 500			7 500	9 000	0.39	6011
	90	18	28 100	21 200	900		7 500	0,55	6211
	100	21	43 600	29 000	1 250	6 300			6311
	120	29	71 500	45 000	1 900	5 600	6 700	1,35	6411
	140	33	99 500	62 000	2 600	5 000	6 000	2,30	0411

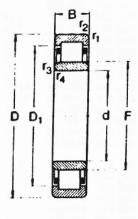

Angular contact ball bearings single row d 10-65 mm

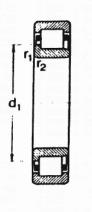


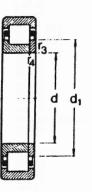
	cipal Insions		Basic load dynamic	ratings static	Fatigue load limit	Speed ra Lubricatio grease		Mass	Designation	
đ	D	8	С	C ₀	Pu					
nm			N		N	r/min		kg	-	
10	30	9	7 020	3 350	140	19 000	28 000	0,030	7200 BE	
12	32	10	7 610	3 800	160	18 000	26 000	0,036	7201 BE	
	37	12	10 600	5 000	208	17 000	24 000	0,060	7301 BE	
15	35	11	8 840	4 800	204	17 000	24 000	0,045	7202 BE	
	42	13	13 000	6 700	280	15 000	20 000	0,080	7302 BE	
17	40	12	11 100	6 100	260	15 000	20 000	0,065	7203 BE	
	47	14	15 900	8 300	355	13 000	18 000	0,11	7303 BE	
20	47	14	14 000	8 300	355	12 000	17 000	0,11	7204 BE	
	52	15	19 000	10 400	440	11 000	16 000	0,14	7304 BE	
25	52	15	15 600	10 200	430	10 000	15 000	0,13	7205 BE	
	62	17	26 000	15 600	655	9 000	13 000	0,23	7305 BE	
30	62	16	23 800	15 600	655	8 500	12 000	0.20	7206 BE	
	72	19	34 500	21 200	900	8 000	11 000	0,34	7306 BE	
35	72	17	30 700	20 800	880	8 000	11 000	0,28	7207 BE	
	80	21	39 000	24 500	1 040	7 500	10 000	0,45	7307 BE	
40	80	18	36 400	26 000	1 100	7 000	9 500	0,37	7208 BE	
	90	23	49 400	33 500	1 400	6 700	9 000	0,63	7308 BE	
45	85	19	37 700	28 000	1 200	6 700	9 000	0.42	7209 BE	
	100	25	60 500	41 500	1 730	6 000	8 000	0,85	7309 BE	
60	90	20	39 000	30 500	1 290	6 000	8 000	0,47	7210 BE	
	110	27	74 100	51 000	2 200	5 300	7 000	1,10	7310 BE	
55	100	21	48 800	38 000	1 630	5 600	7 500	0,62	7211 BE	
	120	29	85 200	60 000	2 550	4 800	6 300	1,40	7311 BE	
60	110	22	57 200	45 500	1 930	5 000	6 700	0,80	7212 BE	
	130	31	95 600	69 500	3 000	4 500	6 000	1,75	7312 BE	
65	120	23	66 300	54 000	2 280	4 500	6 000	1,00	7213 BE	
	140	33	108 000	80 000	3 350	4 300	5 600	2,15	7313 BE	

Cylindrical roller bearings single row d 40-45 mm

Type NU


Type NJ

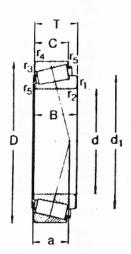

Type NUP


Type N

Principal dimensions		Basic load dynamic		lasic load ratings ynamic static			Speed ratings Lubrication grease oil		Designation	
d	D	в	С	C ₀	limit P _u	ground				
mm			N		N	r/min		kg	-	
40	90	23	80 900	78 000	10 200	6 700	8 000	0,65	NU 308 EC	
(cont.)	90	23	80 900	78 000	10 200	6 700	8 000	0,67	NJ 308 EC	
1	90	23	80 900	78 000	10 200	6 700	8 000	0,68	NUP 308 EC	
	90	23	80 900	78 000	10 200	6 700	8 000	0.64	N 308 EC	
	90	33	112 000	120 000	15 300	6 300	7 500	0,94	NU 2308 EC	
	90	33	112 000	120 000	15 300	6 300	7 500	0,96	NJ 2308 EC	
	90	33	112 000	120 000	15 300	6 300	7 500	0,98	NUP 2308 EC	
	110	27	96 800	90 000	11 600	6 000	7 000	1.30	NU 408	
	110	27	96 800	90 000	11 600	6 000	7 000	1,30	NJ 408	
	110	27	96 800	90 000	11 600	6 000	7 000	1,35	NUP 408	
45	75	16	44 600	52 000	6 300	9 000	11 00 0	0,26	NU 1009 EC	
	85	19	60 500	64 000	8 150	6 700	8 000	0,43	NU 209 EC	
	85	19	60 500	64 000	8 150	6 700	8 000	0,44	NJ 209 EC	
	85	19	60 500	64 000	8 150	6 700	8 000	0.45	NUP 209 EC	
	85	19	60 500	64 000	8 150	6 700	8 000	0,43	N 209 EC	
	85	23	73 700	81 500	10 600	6 700	8 000	0,52	NU 2209 EC	
	85	23	73 700	81 500	10 600	6 700	8 000	0,54	NJ 2209 EC	
	85	23	73 700	81 500	10 600	6 700	8 000	0,55	NUP 2209 EC	
	85	23	73 700	81 500	10 600	6 700	8 000	0,52	N 2209 EC	
	100	25	99 000	100 000	12 900	6 300	7 500	0,90	NU 309 EC	
	100	25	99 000	100 000	12 900	6 300	7 500	0.92	NJ 309 EC	
	100	25	99 000	100 000	12 900	6 300	7 500	0.95	NUP 309 EC	
	100	25	99 000	100 000	12 900	6 300	7 500	0,88	N 309 EC	
	100	36	138 000	153 000	20 000	5 600	6 700	1,30	NU 2309 EC	
	100	36	138 000	153 000	20 000	5 600	6 700	1,30	NJ 2309 EC	
	100	36	138 000	153 000	20 000	5 600	6 700	1,35	NUP 2309 EC	
	4.00	-	105 000	102 000	13 400	5 600	6 700	1,65	NU 409	
	120	29	106 000 106 000	102 000	13 400	5 600	6 700	1.65	NJ 409	
	120 120	29 29	106 000	102 000	13 400	5 600	6 700	1,70	NUP 409	

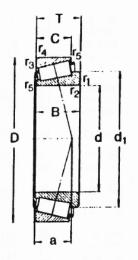
Cylindrical roller bearings single row d 50-55 mm

Type NU

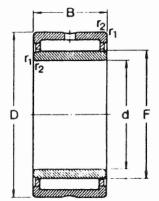

Type NJ

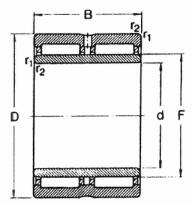
Type NUP

Type N


Principal dimensions			Basic load ratings dynamic static		Fatigue load limit	Speed I Lubricat grease		Mass	Designation
t	D	в	С	C ₀	. P _u				
nm			N		N	r/min		kg	<u> </u>
0	80	16	30 800	34 500	4 000	8 500	10 000	0,31	NU 1010
	90	20	64 400	69 500	8 800	6 300	7 500	0,48	NU 210 EC
	90	20	64 400	69 500	8 800	6 300	7 500	0.49	NJ 210 EC
		20	64 400	69 500	8 800	6 300	7 500	0,51	NUP 210 EC
	90 90	20	64 400	69 500	8 800	6 300	7 500	0,48	N 210 EC
	90	23	78 100	88 000	11 400	6 300	7 500	0,56	NU 2210 EC
		23	78 100	88 000	11 400	6 300	7 500	0.58	NJ 2210 EC
	90 90	23	78 100	88 000	11 400	6 300	7 500	0,59	NUP 2210 EC
	90		78 100	80 000					
	110	27	110 000	112 000	15 000	5 000	6 000	1,15	NU 310 EC
	110	27	110 000	112 000	15 000	5 000	6 000	1,15	NJ 310 EC
	110	27	110 000	112 000	15 000	5 000	6 000	1,20	NUP 310 EC
	110	27	110 000	112 000	15 000	5 000	6 000	1,15	N 310 EC
	110	40	161 000	186 000	24 500	5 000	6 000	1,70	NU 2310 EC
	110	40	161 000	186 000	24 500	5 000	6 000	1,75	NJ 2310 EC
	110	40	161 000	186 000	24 500	5 000	6 000	1,80	NUP 2310 EC
	130	31	130 000	127 000	16 600	5 000	6 000	2.00	NU 410
	130	31	130 000	127 000	16 600	5 000	6 000	2,05	NJ 410
55	90	18	57 200	69 500	8 300	7 000	8 500	0,40	NU 1011 EC
	100	21	84 200	95 000	12 200	6 000	7 000	0,66	NU 211 EC
	100	21	84 200	95 000	12 200	6 000	7 000	0,67	NJ 211 EC
	100	21	84 200	95 000	12 200	6 000	7 000	0,69	NUP 211 EC
	100	21	84 200	95 000	12 200	6 000	7 000	0,66	N 211 EC
	100	25	99 000	118 000	15 300	6 000	7 000	0,79	NU 2211 EC
	100	25	99 000	118 000	15 300	6 000	7 000	0,81	NJ 2211 EC
	100	25	99 000	118 000	15 300	6 000	7 000	0,82	NUP 2211 EC
	100	25	99 000	118 000	15 300	6 000	7 000	0,79	N 2211 EC
	100	20	99,000	110 000	10 000	0000			
	120	29	138 000	143 000	18 600	4 800	5 600	1,45	NU 311 EC
	120	29	138 000	143 000	18 600	4 800	5 600	1,50	NJ 311 EC
	120	29	138 000	143 000	18 600	4 800	5 600	1,55	NUP 311 EC
	120	29	138 000	143 000	18 600	4 800	5 600	1,45	N 311 EC

Taper roller bearingssingle rowd35-50 mm


Principal dimensions		dynamic static		load limit	d Lubrication			Designation	Dimension Series to ISO 355	
đ	D	T	С	Co	Pu					
mm			N		N	r/min		kg	-	-
35	80	22,75	72 100	73 500	8 500	5 000	6 700	0,52	30307	2FB
(cont.)	80	22.75	61 600	67 000	7 800	4 500	B 000	0,52	31307	7FB
	80	32,75	95 200	106 000	12 200	4 800	6 300	0,73	32307	2FE 5FE
	80	32,75	93 500	114 000	13 200	4 500	6 000	0,80	32307 B	DFE
40	68	19	52 800	71 000	7 800	5 300	7 000	0,27	32008 X	3CD
	75	26	79 200	104 000	11 600	5 000	6 700	0,51	33108	2CE
	80	19,75	61 600	68 000	7 650	4 800	6 300	0,42	30208	3DB
	80	24,75	74 800	86 500	9 800	4 800	6 300	0,53	32208	3DC
	80	32	105 000	132 000	15 300	4 300	5 600	0,77	33208	2DE
	85	33	121 000	150 000	17 300	4 500	6 000	0,90	T2EE 040	2EE
	90	25,25	85 800	95 000	11 000	4 500	6 000	0,72	30308	2FB
	90	25,25	73 700	81 500	9 650	4 000	5 300	0,72	31308	7FB 2FD
	90	35,25			16 300	4 000	5 300	1,00	32308	5FD
	90	35.25	108 000	140 000	16 300	4 000	5 300	1,10	32308 B	DFD
45	75	20	58 300	80 000	8 800	4 800	6 300	0,34	32009 X	3CC
	80	26	84 200	114 000	12 900	4 500	6 000	0,56	33109	3CE
	85	20,75	66 000	76 500	8 650	4 500	6 000	0,48	30209	3DB
	85	24,75	80 900	98 000	11 200	4 500	6 000	0,58	32209	3DC
	85	24,75	73 700	93 000	11 000	4 300	5 600	0,60	32209 B	5DC
	85	32	108 000	143 000	16 300 12 900	4 000	5 300	0,82	33209 T7FC 045	3DE 7FC
	95	29	89 700	112 000 186 000	21 200	3 600 4 000	4 800 5 300	1,20	T2ED 045	2ED
	95 100	36 27,25	147 000	120 000	14 600	4 000	5 300	0.97	30309	2FB
	100	27,25	91 300	102 000	12 500	3 400	4 500	0,95	31309	7FB
	100	38.25	140 000	170 000	20 400	3 600	4 800	1,35	32309	2FD
	100	38,25	134 000	176 000	20 000	3 600	4 800	1,45	32309 B	5FD
	00	20	60 500	88 000	9 650	4 500	6 000	0,37	32010 X	3CC
50	80 80	20	69 300	102 000	11 400	4 500	6 000	0,45	33010	2CE
	82	21.5	72 100	102 000	11 000	4 500	6 000	0,43	K-JLM 104948/K-JLM 1049	
	85	26	85 800	122 000	13 700	4 300	5 600	0,59	33110	3CE
	90	21.75	76 500	91 500	10 400	4 300	5 600	0.54	30210	3DB
	90	24,75	82 500	100 000	11 600	4 300	5 600	0.61	32210	3DC
	90	24,75	82 500	104 000	12 500	4 000	5 300	0.65	32210 B	5DC
	90	24,75	106 000	140 000	16 300	4 000	5 300	0,75	K-JM 205149/K-JM 205110	
	90	28	106 000	140 000	16 300	4 000	5 300	0,75	K-JM 205149/K-JM 205110	
	90	32	114 000	160 000	18 300	3 800	5 000	0,90	33210	3DE
	100	36	154 000	200 000	22 800	3 800	5 000	1,30	T2ED 050	2ED
		32	108 000		16 000	3 200	4 300	1,20	T7FC 050	7FC
	105	32	100 000	137 000	10 000	5 200	4 200	1,20	1710 030	110


Taper roller bearings single row d 50-65 mm

Principal dimensions		H			load Lubrication limit grease oil		Mass	Designation	Dimension Series to ISO 355	
d	D	т	С	C ₀	Pu					
mm			N		N	r/min	kg	-1.100	- 26 -	
50	110	29,25	125 000	140 000	17 000	3 600 4 800	1,25	30310	2FB	
(cont.)	110	29,25	106 000	120 000	14 300	3 200 4 300	1,20	31310	7F8 2FD	
	110	42,25	172 000	212 000	24 500	3 200 4 300	1,80	32310	5FD	
	110	42,25	161 000	216 000	25 000	3 200 4 300	1,85	32310 B	SFD	
55	90	23	78 100	112 000	12 500	4 000 5 300	0,56	K-JLM 506849/K-JLM 506810		
••	90	23	80 900	116 000	13 200	4 000 5 300	0,55	32011 X	3CC	
	90	27	89 700	137 000	15 300	4 000 5 300	0,67	33011	2CE	
	95	30	110 000	156 000	18 000	3 800 5 000	0,86	33111	3CE	
	100	22,75	89 700	106 000	12 200	3 800 5 000	0,70	30211	3DB	
	100	26,75		129 000	15 000	3 800 5 000	0,83	32211	3DC	
	100	26,75		127 000	15 300	3 600 4 800	0,87	32211 B	- 3DE	
	100	35	138 000	190 000	22 000	3 400 4 500	1,20	33211 T2ED 055	2ED	
	110	39	179 000	232 000	26 500 19 600	3 400 4 500 3 000 4 000	1,60	T7FC 055	7FC	
	115	34		163 000 163 000	19 600	3 200 4 300	1,55	30311	2FB	
	120	31,5 31,5	142 000	137 000	17 000	2 800 3 800	1,55	31311	7FB	
	120 120	45.5	198 000		29 000	3 000 4 000	2,30	32311	2FD	
	120	45,5	190 000	260 000	30 000	2 800 3 800	2,50	32311 B	5FD	
60	95	23	82 500	122 000	13 700	3 800 5 000	0,59	32012 X	4CC	
	95	24	84 200	132 000	15 000	3 600 4 800	0,62	K-JLM 508748/K-JLM 508710	-	
	95	27	91 300	143 000	16 000	3 800 5 000	0,71	33012	2CE	
	100	30	117 000	170 000	19 600	3 600 4 800	0,92	33112	3CE	
	110	23,75	99 000	114 000	13 400	3 400 4 500	0,88	30212	3EB	
	110	29,75		160 000	19 000	3 400 4 500	1,15	32212	3EC	
	110	38	168 000	236 000	27 000	3 000 4 000	1,60	33212	3EE	
	115	39	168 000	250 000	27 500	3 000 4 000	1.85	T5ED 060	5ED	
	115	40	194 000		30 000	3 200 4 300	1,85	T2EE 060	2EE	
	125	37	154 000	204 000	24 500	2 600 3 600	2,05	T7FC 060	7FC	
	130	33,5		196 000	23 600	3 000 4 000	1,95	30312	2FB 7F B	
	130	33,5	145 000	166 000	20 400	2 600 3 600	1,90	31312	2FD	
	130	48,5	229 000	290 000	34 000	2 600 3 600	2.85	32312 22212 B	5FD	
	130	48,5	220 000	305 000	35 500	2 600 3 600	2,80	32312 B	JFU	
65	100	23	84 200	127 000	14 300	3 400 4 500	0,63	32013 X	4CC	
	100	27	96 800	156 000	17 600	3 400 4 500	0,78	33013	2CE	
	110	28	123 000	183 000	21 200	3 200 4 300	1.05	K-JM 511946/K-JM 511910	-	
	110	34	142 000	208 000	24 500	3 200 4 300	1,30	33113	3DE	
	120	24,75	114 000	134 000	16 300	3 000 4 000	1,15	30213	3EB	
	120	32,75		193 000	23 200	3 000 4 000	1,50	32213	3EC	
	120	39	161 000	240 000	27 500	3 000 4 000	1,95	T6ED 065	5ED	

Needle roller bearings with flanges with inner ring d 40-65 mm

Series NKI(S), NA 49

Series NA 69

Principal dimensions			Basic load ratings dynamic static		Fatigue Ioad Iimit	Speed ratings Lubrication grease oil		Mass	Designation
đ	D	в	С	Co	Pu				
nm			N		N	r/min		kg	
				53.000	7 200	C 000	9 000	0,14	NKI 40/20
40	55	20	27 500 40 200	57 000 93 000	12 000	6 300 6 300	9 000	0,14	NKI 40/20
	55 62	30 22	40 200	71 000	9 150	5 600	8 000	0.23	NA 4908
	62	40	67 100	125 000	16 000	5 600	8 000	0,43	NA 6908
	65	22	42 900	72 000	9 150	5 600	8 000	0,28	NKIS 40
42	57	20	29 200	61 000	7 650	6 000	B 500	0,15	NKI 42/20
44	57	30	41 800	98 000	12 900	6 000	8 500	0,22	NKI 42/30
45	62	25	38 000	78 000	10 000	5 600	B 000	0,23	NKI 45/25
	62	35	49 500	110 000	14 300	5 600	8 000	0,32	NKI 45/35
	68	22	45 700	78 000	10 000	5 300	7 500	0,27	NA 4909
	68	40	70 400	137 000	17 300	5 300	7 500	0,50	NA 6909
	72	22	44 600	78 000	10 000	5 000	7 000	0,34	NKIS 45
50	68	25	40 200	88 000	11 200	5 300	7 500	0,27	NKI 50/25
	68	35	52 300	122 000	16 000	5 300	7 500	0,38	NKI 50/35
	72	22	47 300	85 000	11 000	5 000	7 000	0,27	NA 4910
	72	40	73 700	150 000	19 000	5 000	7 000	0,52	NA 6910
	80	28	62 700	104 000	13 700	4 500	6 300	0,52	NKIS 50
55	72	25	41 800	96 500	12 200	4 800	6 700	0,27	NKI 55/25
	72	35	55 000	134 000	17 600	4 800	6 700	0,38	NKI 55/35
	80	25	57 200	106 000	13 700	4 500	6 300	0,40	NA 4911
	80	45	89 700	190 000	24 000	4 500	6 300	0,78	NA 6911
	85	28	66 000	114 000	15 000	4 300	6 000	0,56	NKIS 55
60	82	25	44 000	95 000	12 000	4 300	6 000	0,40	NKI 60/25
	82	35	60 500	146 000	19 000	4 300	6 000	0,55	NKI 60/35
	85	25	60 500	114 000	14 600	4 300	6 000	0.43	NA 4912
	85	45	93 500	204 000	26 000	4 300	6 000	0.81	NA 6912
	90	28	68 200	120 000	15 600	4 000	5 600	0,56	NKIS 60
65	90	25	61 600	120 000	15 300	4 000	5 600	0,46	NA 4913
	90	25	52 800	106 000	13 700	4 000	5 600	0.47	NKI 65/25
	90	35	73 700	163 000	21 600	4 000	5 600	0.66	NKI 65/35
	90	45	95 200	212 000	27 000	4 000	5 800	0.83	NA 6913
	95	28	70 400	132 000	17 000	3 800	5 300	0,64	NKIS 65

Numerical answers

- Q1. (c)(iii) 7.73x10⁸ N/m
- Q2 (b)(i) 1.26, (ii) 2.46
- Q3. Approximate answers. (a) 7.4 m/s, (b) 0.8 degrees, (c) G = 3, 30% effort, (d) 9.9 m/s, G = 2.8
- Q4. (a)(ii) 15, (c)(i) 7/2 Ti, -9/2 Ti, (ii) -15/4 Ti