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1 (a) A rigid smooth plate of 3.0 m height interacts on its right side with a sand mass
with friction angle 𝜑′ = 30° and unit weight 𝛾 = 20 kN m−3 (Fig. 1). Force 𝐹 equilibrates
the resultant of the soil pressure acting on the plate and 𝑑 is the distance from the ground
surface to its application point. Calculate the range of possible values for 𝐹 and 𝑑 for the
following two situations:

(i) no surcharge load applied at the ground surface; [10%]

(ii) uniform surcharge of 15 kPa applied at the surface. [10%]

Fig. 1

(b) Figure 2 shows two sand masses in direct contact with two vertical, rigid, smooth
plates conneceted by hinged struts spaced evenly 1.0 m apart, and provides some physical
and mechanical characteristics of the soils, both of which are submerged. Assume that
there is no friction at the base of the plates. It is possible to introduce small length
variations in the struts by means of a mechanical system and also to measure the strut
force, 𝐹. This has been measured as 𝐹 = 59 kN, and it has been found that this value
remains constant for (positive or negative) variations of strut length.

Fig. 2
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(i) Determine the friction angle of the soil on the right side of Fig. 2. In what
stress state is the soil on the left and right side of Fig. 2? Justify your answer. [20%]

(ii) Draw the Mohr circles representing the total and effective stress state at a point
in the soil adjacent to each plate at 1.0 m depth. [20%]

(c) A 4 m deep excavation in sand is supported by a cantilevered sheet pile wall, as
shown in Fig. 3. The water table is at dredge level and a uniform surcharge load of 10 kPa
is applied at ground surface on the retained side. The unit weight of the sand in dry and
saturated conditions are 15.3 kN m−3 and 19.7 kN m−3, respectively. The friction angle
of the sand is 𝜑′ = 33°. It is assumed that the wall moves sufficiently to mobilise full
active pressure on the retained side, while the mobilised lateral earth pressure coefficient
𝐾∗
𝑃

on the excavation side is considered to be a constant value.

Fig. 3

(i) Assuming that the mobilised friction at the interface between the sheet pile
wall and the sand on the passive side is 𝛿 = 𝜑′/3, compute the active and passive
lateral earth pressure coefficients using Rankine’s and Lancellotta’s static solutions,
respectively:

𝐾A =
1 − sin 𝜑′

1 + sin 𝜑′

𝐾P =
cos 𝛿

1 − sin 𝜑′

[
cos 𝛿 +

√︃
(sin 𝜑′)2 − (sin 𝛿)2

]
𝑒2Θ tan 𝜑′

where:
2Θ = sin−1 sin 𝛿

sin 𝜑′
+ 𝛿

[10%]

(ii) Compute the depth of embedment, 𝑑, required to obtain 𝐾P/𝐾∗
𝑃
= 1.7, and

the maximum bending moment in the wall for this embedment depth. [30%]
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2 (a) What are the main challenges for excavations and engineered slopes in soils
whose specific volume lies below the critical state line drawn on a 𝑣 − ln𝑝′ plot? Discuss
the relative dangers incurred in drained and undrained conditions. [15%]

(b) Figure 4 shows a slope in quartz fine sand forming a layer about 6 m deep on top
of a parallel sloping bedrock with an inclination of 30°. The fine sand has a critical state
friction angle of 36° and a void ratio of 0.78. The maximum and minimum void ratios
for the fine sand are 0.95 and 0.6, respectively. The specific gravity of the fine sand is
2.7. The slope has shown signs of instability over periods of heavy rainfall. Groundwater
monitoring over a 12 month period showed that the phreatic surface in the sand ran parallel
to the bedrock and at an elevation of 4 m and 2 m above the bedrock in the wet season and
in the dry season, respectively.

Fig. 4

(i) Calculate the dry and saturated unit weights of the fine sand layer. [10%]

(ii) Use infinite slope analysis, and other carefully justified assumptions, to
determine whether the slope would fail in the dry season or the following wet
season. Assume that the corresponding groundwater conditions from the previous
monitoring exercise are exactly duplicated. [30%]

(iii) What is the maximum elevation that the phreatic surface can reach above the
bedrock before the slope will definitely fail? [30%]

(iv) Given that a highway passes at the toe of the slope, stabilisation works are
being considered. One of the proposed solution consists in reducing the thickness
of the sand layer to 4 m, with the assumption that the maximum elevation of the
water table will coincide with the soil surface after excavation. Is this a good idea?
Justify your answer. [15%]
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3 A cylindrical oil storage tank with a diameter of 10 m and a height of 15 m is to be
founded on the surface of the subsoil shown in Fig. 5, with the hydrostatic water table at a
depth of 2 m, as indicated. The dry and saturated unit weight of the sand are 18 kN m−3 and
21 kN m−3 respectively. The clay has a saturated unit weight of 18 kN m−3, and a critical
state friction angle of 25°. At a depth of 5 m, the clay is overconsolidated with a coefficient
of earth pressure at rest 𝐾0 = 1 and an undrained shear strength 𝑠u = 25 kPa. Before filling
the tank with oil, it is to be proof-tested by filling it with water. A piezometer is installed at
point A beneath the centre of the tank to measure the pore pressure. From elastic theory,
the total stress changes at point A due to a circular uniform surface stress𝜎𝑠 applied rapidly
(under undrained conditions in the clay) are Δ𝜎𝑣 = 0.70𝜎𝑠 and Δ𝜎ℎ = 0.23𝜎𝑠 where Δ𝜎𝑣
and Δ𝜎ℎ are the increases in total vertical and horizontal stress respectively.

Fig. 5

(a) Calculate the initial total and effective vertical stress in the ground at point A before
the proof test begins, ignoring the weight of the tank. Plot the effective and total stress
paths in 𝑞 − 𝑝′ and 𝑞 − 𝑝 space as the tank is rapidly filled with water. [35%]

(b) At point A the clay just yields when the height of the water in the tank is 𝐻1 = 8.5 m.
Calculate the corresponding pore pressure measured at A. [15%]

(c) The height of the water is increased to 𝐻2 when the clay at point A first attains
its undrained strength. Find 𝐻2 and the corresponding pore pressure measured at A. For
simplicity, assume that the elastic theory given above for the total stress changes remains
applicable after yield occurs. Sketch the total and effective stress paths. [30%]

(d) Comment on what will happen if the water height is maintained at 𝐻2 for a long
period, showing the likely effective stress path assuming that the total stresses remain
unchanged. What is the relevance of this to the eventual filling of the tank with oil of
specific gravity 0.8? [20%]
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4 Triaxial compression tests are performed on reconstituted samples of Kaolin clay.
Use the parameters given in the Data Book for Kaolin and the Cam Clay model to answer
the following questions.

(a) One sample is consolidated isotropically to 200 kPa and then sheared to failure
in drained conditions. For the following two tests, calculate the drained strength of the
sample and the volumetric strain at failure, and compute the final size of the Cam Clay
yield surface 𝑝′c at failure. Plot the corresponding stress paths in 𝑞 − 𝑝′ space and 𝑣 − 𝑝′

space.

(i) Drained triaxial compression test, in which the axial stress is increased and
the radial stress is kept constant [25%]

(ii) Drained triaxial extension test, in which the radial stress is increased and the
axial stress is kept constant [25%]

(b) Another sample is consolidated isotropically to 600 kPa, and then unloaded drained
to 200 kPa. It is then subjected to undrained triaxial compression, in which the axial stress
is increased and the radial stress is kept constant.

(i) Estimate the undrained shear strength and the excess pore water pressure at
failure [20%]

(ii) Calculate the yield stress at which the soil starts to exhibit plastic behaviour [15%]

(iii) To what isotropic pressure does the clay need to be normally consolidated in
order to give the same undrained shear strength computed in part (b) (i)? [15%]

END OF PAPER
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General definitions 
 

 

Soil structure 

considered  as

 
 

Liquid 

Gas 

Volumes Weights 

Solid 

W a = 0 

W w 

W s 

W t = W s + W w

V v 

V a 

V w 

V s 

V t 

 
 
 
 
 
Specific gravity of solid Gs 
 
Voids ratio e = Vv / Vs  
 
Specific volume v = Vt / Vs  = 1  +  e 
 
Porosity n = Vv / Vt  =  e/(1  +  e) 
 
Water content w = (Ww / Ws) 
 
Degree of saturation Sr = Vw / Vv  =  (w Gs/e) 
 
Unit weight of water w = 9.81 kN/m3 
 

Unit weight of soil  = Wt / Vt  =  
Gs + Sre

1 +  e


 


  w 

 

Buoyant saturated unit weight  =   –  w  =  
Gs  1

1 +  e


 


  w    

 

Unit weight of dry solids d = Ws / Vt  =  
Gs

1 +  e


 


 w 

 

Air volume ratio   A    =  Va/Vt =  







e + 1

)S  -  (1 e r
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Soil classification (BS1377) 
 
Liquid limit wL 
 
 
Plastic Limit wP 
 
 
Plasticity Index IP  =  wL  –  wP 
 
 

Liquidity Index IL  =  
P L

P

ww

ww




   

 
 

Activity = 
Plasticity Index

Percentage of particles finer than 2 m
  

 
 

Sensitivity =

 

Unconfined compressive strength  
    of an undisturbed specimen

Unconfined compressive strength 
      of a remoulded specimen

    

(at the same water content)

 
 
 
Classification of particle sizes:– 
 

Boulders larger than   200 mm 

Cobbles between 200 mm and 60 mm 

Gravel between 60 mm and 2 mm 

Sand between 2 mm and 0.06 mm 

Silt between 0.06 mm and 0.002 mm 

Clay smaller than 0.002 mm (two microns) 
 
 
D equivalent diameter of soil particle 
 
D10, D60 etc. particle size such that 10% (or 60%) etc.) by weight of a soil sample is composed of 

finer grains. 
 
CU uniformity coefficient D60 / D10 
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Seepage 
 
Flow potential: 
(piezometric level)   

A

B

z h

Datum

s

h+hz+z

h
_

h+h
_ _

 

 
 
Total gauge pore water pressure at A: u  =  wh  =  w( h   +  z) 
 
  B: u  +  u  =  w (h + h)  =  w ( h   +  z  +   h   +  z) 
 
Excess pore water pressure at   A: u   =  w h  
 
  B: u   +   u   =  w ( h   +   h ) 
 

Hydraulic gradient A  B   i  =   – 
s

h




 

 
Hydraulic gradient (3D)   i  =  –  h  
 
 
Darcy's law V  =  ki 

  V  =  superficial seepage velocity 

  k   =  coefficient of permeability 
 
Typical permeabilities: 
 
  D10  >  10 mm : non-laminar flow 
  10 mm  >  D10  >  1m : k    0.01 (D10 in mm)2 m/s 
            clays   :     k    10–9  to  10–11 m/s 
 
Saturated capillary zone 

 hc  = 
d

T

w
4

  :    capillary rise in tube diameter d, for surface tension T 

           hc    
10

5103

D

   m :   for water at 10C; note air entry suction is uc = - w hc 
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One-Dimensional Compression 
 
Fitting data 
 
 Typical data (sand or clay)              Mathematical model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Plastic compression stress  c   is taken as the larger of the initial aggregate crushing stress and the 
historic maximum effective vertical stress.  Clay muds are taken to begin with  c  1 kPa.   
 
Plastic compression (normal compression line, ncl):   v  =  v  -  ln  for  = c 
 
Elastic swelling and recompression line (esrl):  v  =  vc  +  (ln c  -  lnv)   
 

             =  v  -   ln v   for  < c 
 
Equivalent parameters for log10 stress scale: 
 
   Terzaghi’s compression index   Cc =   log10e 
 
   Terzaghi’s swelling index  Cs  =  log10e 
 
 

Deriving confined soil stiffnesses 
 
Secant 1D compression modulus    Eo =  ( /)o 
 
 
Tangent 1D plastic compression modulus   Eo =   v  /  

 
 
Tangent 1D elastic compression modulus   Eo =   v  /  
 
 
 

v
v

v

ln ln c





 
 
= 1 kPalog   ' 

v 

ncl 

esrl 
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One-Dimensional Consolidation 
 
 

Settlement     =   mv (u – u ) dz   =    (u – u ) / Eo dz 

Coefficient of consolidation   cv   =  
wv  m

k


   =  

w

okE


 

Dimensionless time factor     Tv   =  
d

tc
2

v  

Relative settlement         Rv   =  
ult


 

 

Solutions for initially rectangular distribution of excess pore pressure 

Approximate solution by parabolic isochrones: 
 
Phase (i) L2  = 12 cvt 

  Rv  =  
3

T4 v
   for Tv < 1/12 

 
Phase (ii) b  =  exp (¼  –  3Tv) 
 
  Rv  = [1 – 2/3 exp(¼  - 3Tv)] for Tv > 1/12 
 
 
Solution by Fourier Series: 
 
Tv 0 0.01 0.02 0.04 0.08 0.15 0.20 0.30 0.40 0.50 0.60 0.80 1.00 
Rv 0 0.12 0.17 0.23 0.32 0.45 0.51 0.62 0.70 0.77 0.82 0.89 0.94 
 

water

increment 
u =  u

t = 0.

CL

L
d

d bu

(i)(ii)

isochrones of excess
pore pressure in two
phases (i) and (ii)



7 

   Soil Mechanics Data Book 

 
Stress and strain components 
 

 Principle of effective stress (saturated soil) 
 
 total stress    =  effective stress  + pore water pressure u 
 
 

 Principal components of stress and strain 
 
 sign convention compression positive 
 total stress 1,  2, 3 

 effective stress 1,  2,  3 
 strain 1,  2,  3 
 
 

Simple Shear Apparatus (SSA)           (2  =  0; other principal directions unknown) 
 

The only stresses that are readily available are the shear stress   and normal stress    applied to 
the top platen. The pore pressure  u  can be controlled and measured, so the normal effective 
stress   can be found.  Drainage can be permitted or prevented. The shear strain   and normal 
strain   are measured with respect to the top platen, which is a plane of zero extension. Zero 
extension planes are often identified with slip surfaces. 
 

 work increment per unit volume        W =  +   
 
 

 Biaxial Apparatus - Plane Strain (BA-PS)     (2  =  0; rectangular edges along principal axes) 
 

Intermediate principal effective stress  2 , in zero strain direction, is frequently unknown so that 
all conditions are related to components in the 1-3 plane. 

 
 mean total stress s = (1  +  3)/2 

 mean effective stress s' = (1  +  3)/2  =  s  –  u 

 shear stress  t = (1  –  3)/2  =  (1  –  3)/2 
 
 volumetric strain v = 1  +  3 

 shear strain   = 1    3 
 
 work increment per unit volume        W = 11  +  33 

    W = sv  + t 
 

  providing that principal axes of strain increment and of stress coincide. 
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 Triaxial Apparatus – Axial Symmetry (TA-AS) (cylindrical element with radial symmetry) 
 
 total axial stress a = a  +  u 

 total radial stress r = r  +  u 

 total mean normal stress p = (a  +  2r)/3 

 effective mean normal stress p' = (a  +  2r)/3  =  p  –  u 

 deviatoric stress q = a  –  r  =  a  –  r 

 stress ratio  = q/p 
 axial strain a 

 radial strain r 

 volumetric strain v = a  +  2r 

 triaxial shear strain s = 
2
3 (a  – r)  

 work increment per unit volume W = aa  +  2rr 

  W = pv  +  qs 
 

Types of triaxial test include: 
  isotropic compression in which  p  increases at zero  q 
  triaxial compression in which q  increases either by increasing  a  or by reducing  r 

  triaxial extension in which  q  reduces either by reducing  a  or by increasing  r 
 
 

 Mohr's circle of stress (1–3 plane) 
 

Sign of convention: compression, and counter-clockwise shear, positive 
 

 +ve  

N plane

X plane

Y plane

Y

X



yy

 yx

xx

xy

 

P Y

N

t

s

X

(yy ,  yx )

( ,  )
xx xy



3 1 



• •

•
•

•

•

 
 

Poles of planes  P :  the components of stress on the  N  plane are given by the intersection  N  of 
the Mohr circle with the line  PN  through  P  parallel to the plane. 
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Elastic stiffness relations 
 
These relations apply to tangent stiffnesses of over-consolidated soil, with a state point on some 
swelling and recompression line (-line), and remote from gross plastic yielding. 
 
One-dimensional compression (axial stress and strain increments  d, d) 
 
 compressibility mv = d

d   

 
 constrained modulus Eo = 1

mv
 

 
 
Physically fundamental parameters 
 
 shear modulus  G = dt

d
 

 

 bulk modulus   K = d p 
dv

 

 
 
Parameters which can be used for constant-volume deformations 
 
 undrained shear modulus Gu = G 
 
 undrained bulk modulus Ku =       (neglecting compressibility of water) 
 
 
Alternative convenient parameters 
 
 Young's moduli E  (effective),  Eu  (undrained) 
 
 Poisson's ratios   (effective),  u  =  0.5  (undrained) 
 
 Typical value of Poisson’s ratio for small changes of stress:  
 


Relationships: G = 
E

2 (1 + )
  

 

  K = 
E

3 (1 – 2)
  

 

  Eo = 
E (1 – )

(1 + ) (1 – 2)
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Cam Clay 
 

Interchangeable parameters for stress combinations at yield, and plastic strain increments 
 
System Effective 

normal 
stress 

Plastic 
normal 
strain 

Effective 
shear 
stress 

Plastic 
shear 
strain 

Critical 
stress 
ratio 

Plastic 
normal 
stress 

Critical 
normal 
stress 

General     crit c crit 

SSA     tan crit c crit 

BA-PS s v t  sin crit s c s crit 

TA-AS p v q s M p c p crit 

 

General equations of plastic work
 

 Plastic work and dissipation  +=   crit 


 Plastic flow rule – normality  



d

d . 



d

d   =   1 

 
General yield surface 
 

 

    =   *   =   *crit . ln 






c  

 
Parameter values which fit soil data 
 

 London  
Clay 

Weald  
Clay 

Kaolin Dog’s Bay 
Sand 

Ham River 
Sand 

 0.161 0.093 0.26 0.334 0.163 

 0.062 0.035 0.05 0.009 0.015 

   at 1 kPa 2.759 2.060 3.767 4.360 3.026 

c, virgin kPa 1 1 1 Loose 500 

Dense 1500 

Loose 2500 

Dense 15000 

crit 23 24 26 39 32 
Mcomp 0.89 0.95 1.02 1.60 1.29 

Mextn 0.69 0.72 0.76 1.04 0.90 
wL 0.78 0.43 0.74 -------------- -------------- 
wP 0.26 0.18 0.42 -------------- -------------- 
Gs 2.75 2.75 2.61 2.75 2.65 
 
Note:   1)  parameters c should depend to a small extent on the deformation mode, e.g. 

SSA, BA-PS, TA-AS, etc.  This may be neglected unless further information is given. 
 2)  Sand which is loose, or loaded cyclically, compacts more than Cam Clay allows. 
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The yield surface in (*, *, v) space 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Regions of limiting soil behaviour 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

v 

*crit *c ln*crit ln*c 

N 


v 

v 

ncl 

csl 

esrl 

ncl: normal compression line 
 v  =  N –  ln * 
 
csl: critical state line 
 v  =   –  ln * 
 
where   N  =   +  -  

* 
* 

*, * 

*crit 

*c *crit 

*, * 

csl 

elastic 
-line 

yield 
      surface 

* 
* 

*, * 

*crit 

*c *crit 

*, * 

csl

elastic 

tension  
failure 
3 =0 

D 

L 

C 

Variation of Cam Clay yield surface 
 
Zone D: denser than critical, “dry”,  

dilation or negative excess pore pressures, 
Hvorslev strength envelope,  
friction-dilatancy theory, 
unstable shear rupture, progressive failure 

 
Zone L: looser than critical, “wet”,  

compaction or positive excess pore pressures, 
 Modified Cam Clay yield surface,  

stable strain-hardening continuum 
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Strength of soil: friction and dilation 
 

Friction and dilatancy: the saw-blade model of direct shear 
 
 
 
 
 
 
 
 
 
 
 
 Intergranular angle of friction at sliding contacts  
 
 Angle of dilation  max
 
 Angle of internal friction   maxmax
 
 

Friction and dilatancy: secant and tangent strength parameters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

max

crit 



crit 

critical state line 

max 
crit 

crit 



crit  

critical state line 

crit c 

Secant angle of internal friction
  
  =     tan max 
maxcrit 
 =  f (crit/) 
 
typical envelope fitting data:  
power curve 
(/crit) = (/crit)

with   0.85 

Tangent angle of shearing envelope 
 
 =  c +  tan  
c   =  f (crit) 
 
 
typical envelope: 
straight line 
tan  = 0.85 tan crit 

c  =  0.15 crit 

macro 
slip-suface 

sliding 
displacement

resultant 
force max max 
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 Friction and dilation:  data of sands 
 
The inter-granular friction angle of quartz grains,  26. Turbulent shearing at a critical state 
causes crit  to exceed this.  The critical state angle of internal friction  crit  is a function of the 
uniformity of particle sizes, their shape, and mineralogy, and is developed at large shear strains 
irrespective of initial conditions. Typical values of  crit (2º) are: 
 
 well-graded, angular quartz or feldspar sands 40º 
 uniform sub-angular quartz sand   36º 
 uniform rounded quartz sand   32º 
 

Relative density    ID  =  
(emax – e)

(emax – emin)       where: 

 
 emax   is the maximum void ratio achievable in quick-tilt test 
 emin   is the minimum void ratio achievable by vibratory compaction 
 
Relative crushability  IC  =  ln (c/ p)    where: 
 
 c   is the aggregate crushing stress, taken to be a material constant, typical values being: 
        80 000 kPa for quartz silt, 20 000 kPa for quartz sand, 5 000 kPa for carbonate sand. 
 
 p   is the mean effective stress at failure which may be taken as approximately equal to the 

effective stress normal to a shear plane. 
 
Dilatancy contribution to the peak angle of internal friction  is    =  (max  –  crit)  =  f (IR) 
 
Relative dilatancy index  IR  =  ID IC – 1  where: 
 
 IR  < 0   indicates compaction, so that ID  increases and IR    0 ultimately at a critical state 
 IR  > 4   to be limited to  IR = 4  unless corroborative dilatant strength data is available 
 
The following empirical correlations are then available 
 
 plane strain conditions (max  –  crit) =   0.8  max =   5 IR  degrees 

 triaxial strain conditions (max  –  crit) =  3 IR  degrees 

 all conditions (–v / 1)max =  0.3 IR 
 
The resulting peak strength envelope for triaxial tests on a quartz sand at an initial relative density  
ID  =  1  is shown below for the limited stress range 10 - 400 kPa: 

100 200 300 400 

300 

200 

100 
 crit +    9 degrees 

  kPa


max 

kPa  

crit 
max  >  crit + 9    for  ID = 1, 400 kPa 
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Mobilised (secant) angle of shearing  in the 1 – 3 plane 
 

       

 

0  3    

T 

S 
     1  

sin    = TS/OS 
 

   = 
(1 – 3)/2
(1 + 3)/2

  

 

[ '

'

3

1


 ] =   

)sin1(

)sin1(







 

 
 
Angle of shearing resistance: 
 

 at peak strength max  at  [ '

'

3

1


 ] 

max
 

 
 at critical state  crit  after large shear strains 
 
 

Mobilised angle of dilation in plane strain   in the 1 – 3 plane 
 

       

V O

Z



1 


2

 
3

   sin     = VO/VZ 
 

    = – 
(1 + 3)/2
(1 – 3)/2

  

 

    = – 
v


  

 
 

[
3

1


 ] =    

)sin1(

)sin1(







 

 

 at peak strength    =  max  at  [ '

'

3

1


 ] 

max
 

 
 at critical state    =  0  since volume is constant 
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Plasticity:  Cohesive material   max  =  cu        (or  su) 
 

Limiting stresses 
 
 Tresca  1   3   =  qu  =  2cu 

 

 von Mises (1 – p)2  +  (2 – p)2  +  (3 – p)2  =  
2
3  q2

u   =  2c2
u    

 
where  qu  is the undrained triaxial compression strength, and  cu  is the undrained plane shear 
strength. 
 
Dissipation per unit volume in plane strain deformation following either Tresca or von Mises, 
 
   D  = cu  
 
For a relative displacement  x  across a slip surface of area  A  mobilising shear strength  cu , this 
becomes 
 
   D  =  Acux 
 
 

Stress conditions across a discontinuity 
 

 
 

Rotation of major principal stress  
 
sB  –  sA  =  s  =  2cu sin  
1B  –  1A  =  2cu sin  

 
 

In limit with   0 
 
 ds  =  2cu d 
 

          Useful example: 
 
   =  30º 
 
 1B – 1A= cu 
 
 D / cu  =  0.87 
 

1A =  major principal stress in zone A 
 

1B =  major principal stress in zone B 
 

 

 

cu D 



D

sA sB

s




 

A B

1A 1B

D 

 

A 

B 
D D

 
discontinuity

1B

1A

D

D
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Plasticity: Frictional material   ()max  =  tan  


Limiting stresses 
 

sin = ('1f - ’3f)/(’1f + ’3f) = (1f - 3f)/(1f + 3f - 2us) 
 
where'1f  and ’3f are the major and minor principal effective stresses at failure, 1f  and 3f are the 
major and minor principle total stresses at failure, and us is the steady state pore pressure. 
 
Active pressure: hv σσ    

 v1 σσ   (assuming principal stresses are horizontal and vertical) 

 h3 σσ   

     sin1sin1 aK  

 
Passive pressure: vh σσ   

 h1 σσ   (assuming principal stresses are horizontal and vertical) 

 v3 σσ   
     aKpK /1sin1sin1    

 

Stress conditions across a discontinuity 
 
 Rotation of major principal 

stress 
 
  =  /2 –    
 
1A  =  major principal stress 
            in zone A 
 
1B  =  major principal stress in 

zone B 
 
tan  = D / ’D 
 
 

 
 

 
sin  = sin  / sin  

 
s’B/s’A = sin( + ) / sin( – ) 
 
In limit, d    0 and       
 
ds’= 2s’. d tan  
 
Integration gives s’B/s’A = exp (2 tan ) 
 

  

 

 

sA sB

D










 1A 1B

B

A 

 D

D

D

D



A

B

discontinuity

  

1A 

1B

D

D 
 

 
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Empirical earth pressure coefficients following one-dimensional strain 
 
Coefficient of earth pressure in 1D plastic compression (normal compression) 
 
 Ko,nc = 1 –  sin crit 

 

Coefficient of earth pressure during a 1D unloading-reloading cycle (overconsolidated soil) 
 

 
















)1(n

)1n()1n(
1KK

max

max
nco,o


 

where  n        is current overconsolidation ratio (OCR) defined as ''
max, / vv    

 maxn is maximum historic OCR defined as '
min,

'
max, / vv   

       is to be taken as  1.2 sincrit
 
 
Cylindrical cavity expansion 
 
Expansion A  =  A  –  Ao  caused by increase of pressure  c  =  c  –  o 
 

At radius r: small displacement   =  
A
2r

  

 

 small shear strain   =  
2
r   

 

Radial equilibrium: r 
dr
dr    +  r  –    =  0 

 

Elastic expansion (small strains) c  =  G
A
A   

 

Undrained plastic-elastic expansion c  =  






 
A

A
ln+

c

G
ln+1c

u
u  

 
 
Infinite slope analysis 
 
        u   =  wzw cos2 
          =   z cos2 
        ′  =  (z - wzw) cos2 
           =   z cos sin

phreatic 
surface 

trial shear 
surface 

zw 

z 

unit  
area 



z cos 



u ′
z

z
1 ww

mob









tan

=
′

=tan

(             )- 
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Shallow foundation design 
 
Tresca soil, with undrained strength su 
 
Vertical loading  
 
The vertical bearing capacity, qf, of a shallow foundation for undrained loading (Tresca soil) is: 
 

hsNdsq
A

V
ucccf

ult   

 
Vult and A are the ultimate vertical load and the foundation area, respectively. h is the embedment of the 
foundation base and  (or ') is the appropriate density of the overburden.  
 
The exact bearing capacity factor Nc for a plane strain surface foundation (zero embedment) on uniform soil 
is: 
 

Nc = 2 +    (Prandtl, 1921) 
 
Shape correction factor: 
 
For a rectangular footing of length L and breadth B (Eurocode 7): 
 

sc = 1 + 0.2 B / L 
 
The exact solution for a rough circular foundation (D = B = L) is qf = 6.05su, hence sc = 1.18  1.2. 
 
Embedment correction factor: 
 
A fit to Skempton’s (1951) embedment correction factors, for an embedment of h, is: 
 

dc = 1 + 0.33 tan-1 (h/B) (or h/D for a circular foundation) 
 
Combined V-H loading 
 
A curve fit to Green’s lower bound plasticity solution for V-H loading is: 
 

If V/Vult > 0.5:  
ultult H

H
1

2

1

2

1

V

V
  or 

2

ultult

1
V

V
21

H

H








  

 
If V/Vult  < 0.5:   H = Hult = Bsu 
 
Combined V-H-M loading 
 
With lift-off:  combined Green-Meyerhof 
 

Without lift-off: 01
H

H

H

H
3.01

M

M

V

V
3

ult

2

ultult

2

ult







































  (Taiebet & Carter 2000) 
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Frictional (Coulomb) soil, with friction angle  
 
Vertical loading 
 
The vertical bearing capacity, qf, of a shallow foundation under drained loading (Coulomb soil) is: 
 

2

B'
Ns'Nsq

A

V
0vqqf

ult    

 
The bearing capacity factors Nq and N account for the capacity arising from surcharge and self-weight of the 
foundation soil respectively. 'v0 is the in situ effective stress acting at the level of the foundation base. 
 
For a strip footing on weightless soil, the exact solution for Nq is: 
 

Nq = tan2(/4 + /2) e( tan )  (Prandtl 1921) 
 
An empirical relationship to estimate N from Nq is (Eurocode 7): 
 

N = 2 (Nq – 1) tan  
 
Curve fits to exact solutions for  
N= f() are (Davis & Booker 1971): 
 

Rough base: 
 

6.9e1054.0N   

Smooth base:  
 

3.9e0663.0N  

 
Shape correction factors: 
 
For a rectangular footing of length L and 
breadth B (Eurocode 7): 
 

sq = 1 + (B sin ) / L 
s = 1 – 0.3 B / L 

 
For circular footings take L = B. 
 
Combined V-H loading 
 
The Green/Sokolovski lower bound solution 
gives a V-H failure surface. 
 
Combined V-H-M loading   
 
With lift-off- drained conditions - use Butterfield & Gottardi (1994) failure surface shown above 
 

2

ultultmh

ultult

2

m

ult

2

h

ult

V

V
1

V

V

tt

)V/H)(BV/M(C2

t

BV/M

t

V/H











































 

where  






 


mh

mhmh

tt2

)tt)(tt(2
tanC    (Butterfield & Gottardi, 1994) 

 
Typically, th~0.5, tm~0.4 and ~15. Note that th is the friction coefficient, H/V= tan, during sliding. 
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Settlement of Shallow Foundations 
 
Elastic stress distributions below point, strip and circular loads 
 
Point loading (Boussinesq solution) 
 

Vertical stress  
5

3

z
R2

Pz3


  

Radial stress  














zR

R)21(

R

zr3

R2

P
3

2

2r  

Tangential stress 



 




 R

z

zR

R

R2

)21(P
2

 

Shear stress  
5

2

rz
R2

zPr3


  

 
Uniformly-loaded strip 
 

Vertical stress   )2cos(sin
q

v 


  

Horizontal stress  )2cos(sin
q

h 


  

Shear stress  )2sin(sin
q

vh 


  

Principal stresses )sin(
q

)sin(
q

31 





  

 
 
 
 
Uniformly-loaded circle radius a 
(on centerline, r=0) 
 
Vertical stress   
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Horizontal stress  
 



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
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
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Contours of vertical stress below uniformly-loaded  
circular (left) and strip footings (right) 
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Elastic solutions for surface settlement 
Isotropic, homogeneous, elastic half-space (semi-infinite) 
 
Point load (Boussinesq solution) 

Settlement, w, at distance s:  
s

P

G

)1(

2

1
)s(w




  

Circular area (radius a), uniform soil 

Uniform load:  central settlement:  qa
G

)1(
w o


  

   edge settlement: qa
G

)1(2
w e




  

Rigid punch: (qavg= V/a2)   aq
G

)1(

4
w avgr


  

 
 
Rectangular area, uniform soil 
 
Uniform load, corner settlement: 
 

 rectc I
2

qB

G

)1(
w


   

 
Where Irect depends on the aspect ratio, L/B: 
 

L/B Irect L/B Irect L/B Irect L/B Irect 
1 0.561 1.6 0.698 2.4 0.822 5 1.052 

1.1 0.588 1.7 0.716 2.5 0.835 6 1.110 
1.2 0.613 1.8 0.734 3 0.892 7 1.159 
1.3 0.636 1.9 0.750 3.5 0.940 8 1.201 
1.4 0.658 2 0.766 4 0.982 9 1.239 
1.5 0.679 2.2 0.795 4.5 1.019 10 1.272 

 

Rigid rectangle: rgd
avg

r I
2

BLq

G

)1(
w


 where Irgd varies from 0.90.7 for L/B = 1-10. 

Note: 
)1(2

E
G


  where = Poisson’s ratio, E= Young’s modulus. 


