EGT2 ENGINEERING TRIPOS PART IIA

Tuesday 4 May 2021 1.30 to 3.10

Module 3D3

STRUCTURAL MATERIALS AND DESIGN

Answer not more than **three** questions.

All questions carry the same number of marks.

The *approximate* percentage of marks allocated to each part of a question is indicated in the right margin.

Write your candidate number <u>**not**</u> *your name on the cover sheet and at the top of each answer sheet.*

STATIONERY REQUIREMENTS

Write on single-sided paper.

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM

CUED approved calculator allowed. Attachment: 3D3 Structural Materials and Design data sheet (18 pages). You are allowed access to the electronic version of the Engineering Data Books.

10 minutes reading time is allowed for this paper at the start of the exam.

The time taken for scanning/uploading answers is 15 minutes.

Your script is to be uploaded as a single consolidated pdf containing all answers.

1 (a) With the aid of annotated sketches as appropriate, explain the role of characteristic values and partial safety factors for actions and resistances in achieving a suitably safe structural design using a limit state design approach. [30%]

(b) Actions on a structure may be permanent (i.e. they are always present) or transient (i.e. they may or may not be present at any given time). Different partial safety factors are usually used for permanent and transient actions. Figure 1 shows a continuous three-span beam over simple supports. The loadings on each span will be uniformly distributed. The beam is to be designed for a permanent load of 10 kNm⁻¹ and a transient load of 20 kNm⁻¹. Suitable partial safety factors are indicated in Table 1. If the beam is to be made from a brittle material, sketch the design load cases that would lead to:

(i) Maximum sagging moment at the mid-span of BC.	[10%	J.
---	------	----

- (ii) Maximum sagging moment at the mid-span of CD. [15%]
- (iii) Maximum hogging moment over support C. [15%]

Δ	Δ	Δ	Δ
А	В	С	D

Fig. 1

Tabl	e	1	•

action	partial safety factor	
permanent action	adverse effect	1.35
	beneficial effect	1.00
transient action	adverse effect	1.50
transient action	beneficial effect	0.00

(c) The final design for the beam uses a ductile material. During construction, the support at D is built slightly too low, such that the unloaded beam is initially not in contact with the support. Without calculation but with the aid of annotated sketches, explain how the strength of the beam and the deflection at the mid-span of CD is affected for the case of a mid-span point load on span CD as shown in Fig. 2.

Fig. 2

[30%]

Version RMF/8

Figure 3 shows a 12 m long reinforced concrete beam continuous over two simple supports at B and C. The beam is to be 300 mm wide and 600 mm deep and requires a cover of 45 mm for reasons of fire. The concrete strength is to be C32/40 meaning that it has a characteristic compressive cylinder strength $f_{ck} = 32$ MPa and a characteristic compressive cube strength $f_{cu} = 40$ MPa. All reinforcing steel used in the design is to be high yield deformed bar with a characteristic compressive and tensile strength $f_{yk} = 500$ MPa. Material partial safety factors are $\gamma_c = 1.5$ for concrete and $\gamma_s = 1.15$ for steel. Permanent loads including the self-weight of the beam can be taken as 3 kNm⁻¹ and transient loads on the beam are 24 kNm⁻¹. Partial safety factors for load should be taken as 1.35 for permanent loads and as 1.50 for transient loads. A single load case of uniformly distributed load along the full length of the beam should be considered, as indicated in Fig. 3.

Fig. 3

(a) Sketch the shear force and bending moment diagrams for the beam, clearly identifying salient values and their locations. [20%]

(b) Design the required longitudinal reinforcement for the regions of maximum sagging and hogging moments. [30%]

(c) Determine whether transverse shear reinforcement is required in the region of maximum shear and design this reinforcement if required. [20%]

(d) Without further calculation, sketch an efficient reinforcement layout for the proposed reinforcement design. [10%]

Version RMF/8

(e) After construction, a proposal is made to reduce the tip deflection of the right-hand cantilever by providing an additional support at D. Without further calculation but with the aid of sketches, comment on the implications of this proposal and any concerns you might have as the structural engineer. [20%]

3 (a) During a design meeting, the architect you are working with shows you a sketch summarizing their preferred primary structural grid layout for a small, multistorey office building. You are concerned that the architect's sketch does not appear to have considered stability.

Fig. 4

 (i) Sketch two suitable, efficient structural arrangements and stability systems for the building based on the architect's proposed grid – one for a structural steel frame option and one for a structural concrete frame option. Clearly indicate the restraint conditions at the ends of members (e.g., fixed, pinned) and any other design assumptions as appropriate for each option. [30%]

(ii) Comment on the reasons for your design choices in (i). [10%]

(b) The client is also attending the meeting and has a new-found interest in sustainability. During the meeting, the client asks you, "whether an engineered timber structure might reduce the environmental impacts of the building compared to a steel or concrete option?" Provide a brief but balanced answer to the client's question. [30%]

(c) The client's mind now turns to fire. Briefly explain to the client the differences between the design of a structure using steel, concrete and engineered timber from the point of view of structural fire safety. [30%]

Version RMF/8

4 A plastic tank with negligible weight, having the shape of a cube, rests on top of a steel frame. The tank is filled with 8000 litres of water. Fig. 5 shows the elevation view, which is identical in both orthogonal directions. The frame is made of S355 (hot-finished) square hollow sections, which are welded together at the connections. For the purposes of design, all connections can be considered to be hinges.

U

The load is first transferred by contact to the horizontal upper members of the frame, which act as simply supported beams. To ensure lateral stability, the frame needs to be able to resist a lateral force equal to 2% of the vertical load. Partial safety factors for permanent load may be taken as 1.35 and for transient load may be taken as 1.50.

(a) Determine the design values of the actions that the beams, columns and bracing members that comprise the structure must resist. [20%]

Material partial safety factors are $\gamma_{M0} = 1$ for the resistance of the cross section, $\gamma_{M1} = 1$ for the resistance of the member to buckling and $\gamma_{M2} = 1.25$ for the resistance of the cross section in tension to fracture.

(b) All members have the same cross-section. Determine the member size with minimum weight so that the necessary design checks are satisfied for:

(i)	the beams;	[30%]
(ii)	the columns;	[30%]
(iii)	the bracing members.	[20%]

END OF PAPER

Version RMF/8

THIS PAGE IS BLANK

University of Cambridge Department of Engineering

Engineering Tripos Part IIA

Module 3D3 Structural Materials & Design

Datasheets

Michaelmas 2020

THE CUMULATIVE NORMAL DISTRIBUTION FUNCTION

$\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-\frac{x^2}{2}} dx$	FOR $0.00 \le u \le 4.99$.	
--	-----------------------------	--

u 00 01 02 03 04 05 06 07 08 09 0 5000 5040 5080 5120 5160 5233 5379 5339 5379 5339 5371 5733 5753 5764 5666 5675 5714 5731 5731 5714 5733 5714 5731 566 5646 6644 6617 5646 6443 6466 6446 6617 5656 6466 6447 6767 7724 7761 7724 7763 7724 7763 7724 7764 7833 6313 6513 6513 6533 63333 63333 6333					V 201 *-0	0					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	+00	.01	•02	•03	-04	-05	· o6	-07	-08	-09
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				-	.5120	·5160	-5199	.5239	.5279	.5310	.5350
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.5517	5557					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.5910						-6141
4 6554 6591 66628 6664 6700 6736 6772 6603 6844 6879 5 6915 6950 6985 7019 7054 7088 71123 7157 7190 7224 6 7725 7731 7734 7754 7744 7745 7774 7746 7774 7746 7774 7774 7764 7746 77753 77734 7764 7764 77873 77754 7764 7764 77875 7892 8578 8106 8123 8514 8510 8106 8131 10 8413 8438 8461 8485 8068 8531 8554 8577 8999 8621 12 8849 8866 8888 8007 92624 92928 91149 91329 91446 91627 97778 97127 97247 97287 99124 92073 92249 92364 93077 92647 92785 99128 94128 94128 94235 94128 94235 94128 94235 94128 94235 94128 92312 93433 94622 94179 94395 94468 17 95244 92547 95788 97687 95788 97687 97585 97535 97535 97535 97535 97535 97535 97535 97637 98589 98537 98537 98537 98537 98537 98537 98537 98537 98537 <td></td> <td></td> <td>·6217</td> <td>·6255</td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td>			·6217	·6255					•		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-4	-6554	·6591	·6628	-6664						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•5	-6915	-6950	-6985	.7010	.7054	-7088				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•6	.7257					•	- +			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.7										
9 8159 8166 8212 8236 8264 8283 8315 8367 8160 8167 10 8413 6438 8461 8485 8508 8729 8749 8777 8590 8815 8897 90147 12 8443 8866 8866 8708 8275 8444 8662 8980 9970 8170 8870 8817 9174 13 90320 90490 90658 90824 90983 91447 92733 92073 92220 92364 92507 92647 92785 92222 93056 93182 14 94530 94438 94357 93582 93943 94062 94179 94495 94495 17 95543 95557 95733 97534 95686 95624 99247 95684 96866 96925 97653 19 97128 97778 97783 97327 97330 977381 97441 97500 97558 97613 97672 20 97725 97330 973381 974812 98300 98807 98377 98574 21 98577 9830 98679 97335 97053 972451 97353 97353 97353 97353 97353 97353 97333 97333 97333 97333 97333 97333 97333 97333 97333 97333 97333 97333 97333 97333 97333 97333 9	-8			• •				.7704			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•9							-8315			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I.0	.8413	-8438	·846T							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I·I	.8643			-8708			-0554	.0577		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5	-8840			-8007	8025	-0749		·8790		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.3		-					-			·90147
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_									-91621	·9I774
169452094730957379574399493994439477994285944051795543955379572895818959079599495053951549552495523955249552395758189407944859665096638967129678496856969259706297128971939725797320973819741797588976579755897670209772597778978319788297932979829803098840988709887098874219821498257989309834198382942229803098840988709889323982898056989839'00979'13589'06139'18039'12449'13449'1361249'18029'20249'24519'24579'20559'50759'60039'63139'6427259'27909'23639'241329'244579'24559'5759'60039'63199'6427259'27909'23539'54739'56339'66389'7029'71109'71209'72829'7364269'5339'54739'55339'56379'68339'86569'88339'86059'6427279'65339'54739'56359'76369'77449'78449'78829'7489'85119'8519279'65339'54739'57539'77539'7744 <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td>·92507</td><td>-92647</td><td>·92785</td><td>·92922</td><td>93056</td><td>·93189</td></t<>				-		·92507	-92647	·92785	·92922	93056	·93189
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					·93699	·93822	•93943	·94062	.04170	-04205	04408
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			·94630			·94950	·95053	.95154			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					·95818	95907					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				·96562	·96638						
2-1 $\frac{9}{9}214$ $\frac{9}{9}237$ $\frac{9}{9}300$ $\frac{9}{9}341$ $\frac{9}{9}322$ $\frac{9}{9}7922$ $\frac{9}{9}3630$ $\frac{9}{9}8713$ $\frac{9}{9}874$ $\frac{9}{9}8422$ $\frac{9}{9}8401$ $\frac{9}{9}500$ $\frac{9}{9}857$ $\frac{9}{9}873$ $\frac{9}{9}828$ $\frac{9}{9}8257$ $\frac{9}{9}300$ $\frac{9}{9}713$ $\frac{9}{9}7432$ $\frac{9}{9}8778$ $\frac{9}{9}860$ $\frac{9}{9}8500$ $\frac{9}{9}837$ $\frac{9}{9}8983$ $\frac{9}{9}2322$ $\frac{9}{9}2024$ $\frac{9^{2}2240}{9^{2}240}$ $\frac{9^{2}2451}{9^{2}2656}$ $\frac{9^{2}}{9^{2}}2857$ $\frac{9^{2}}{9}3033$ $\frac{9^{2}}{3}244$ $\frac{9^{2}}{9}1341$ $\frac{9^{2}}{9}3613$ $\frac{9^{2}}{2}5$ $\frac{9^{2}}{3}390$ $\frac{9^{2}}{9}504$ $\frac{9^{2}}{9}2737$ $\frac{9^{2}}{9}4514$ $\frac{9^{2}}{9}4760$ $\frac{9^{4}}{9}475$ $\frac{9^{2}}{9}500$ $\frac{9^{2}}{9}333$ $\frac{9^{2}}{5}5339$ $\frac{9^{2}}{9}5473$ $\frac{9^{2}}{9}504$ $\frac{9^{2}}{9}2571$ $\frac{9^{2}}{9}3555$ $\frac{9^{2}}{9}5975$ $\frac{9^{2}}{9}6033$ $\frac{9^{2}}{9}6207$ $\frac{9^{2}}{9}3312$ $\frac{9^{2}}{9}238$ $\frac{9^{2}}{7}9^{2}6333$ $\frac{9^{2}}{9}5504$ $\frac{9^{2}}{9}753$ $\frac{9^{2}}{7}73$ $\frac{9^{2}}{7}97200$ $\frac{9^{2}}{7}110$ $\frac{9^{2}}{7}179$ $\frac{9^{2}}{9}2382$ $\frac{9^{2}}{7}9232$ $\frac{9^{2}}{7}9481$ $\frac{9^{2}}{9}4627$ $\frac{9^{2}}{9}2322$ $\frac{9^{2}}{7}933$ $\frac{9^{2}}{7}77$ $\frac{9^{2}}{9}2814$ $\frac{9^{2}}{9}7882$ $\frac{9^{2}}{9}7948$ $\frac{9^{2}}{9}232$ $\frac{9^{2}}{7}933$ $\frac{9^{2}}{7}77$ $\frac{9^{2}}{9}2814$ $\frac{9^{2}}{7}882$ $\frac{9^{2}}{9}7948$ $\frac{9^{2}}{9}302$ $\frac{9^{2}}{7}833$ $\frac{9^{2}}{9}2835$ $\frac{9^{2}}{9}835$ $\frac{9^{2}}{9}28411$ $\frac{9^{2}}{9}4812$ $\frac{9^{2}}{9}2859$ $\frac{9^{2}}{9}857$ $\frac{9^{2}}{9}2859$ $\frac{9^{2}}{9}857$ $\frac{9^{2}}{9}2857$ $\frac{9^{2}}{9}2858$ $\frac{9^{2}}{9}2879$ $\frac{9^{2}}{9}2879$ $\frac{9^{2}}{9}2879$ $\frac{9^{2}}{9}287$	1.0	•97128	·97193	·97257							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					-97882	·97932	·97982	.08030	-98077	·08124	-08160
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.98257		·98341	·98382					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					·98713	·98745					-08800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				·98983	·9 ² 0097						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.4	·9 ² 1802	•9² 2024	·9² 2240		•9² 2656	·9² 2857				-9-3613
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-9 ² 3790	•9² 3963	9 ² 4132	·Q ² 4207	·0 ² 4457	·02 46T4	02 4766	-02 4015	-02 5060	
2-7 $-9^{2}6533$ $-9^{2}6636$ $9^{1}6736$ $9^{2}6833$ $9^{2}6928$ $-9^{2}7920$ $9^{2}793$ $9^{2}7197$ $9^{2}782$ $9^{2}7362$ 2-9 $-9^{2}8134$ $9^{2}8193$ $-9^{1}8250$ $9^{2}8305$ $9^{2}8359$ $-9^{2}8141$ $-9^{2}8862$ $-9^{2}8911$ $-9^{2}8559$ $-9^{2}8605$ 3-0 $-9^{2}8650$ $-9^{2}8694$ $-9^{1}8736$ $-9^{2}8777$ $-9^{2}8817$ $-9^{2}8856$ $-9^{2}8893$ $-9^{1}8930$ $-9^{1}8965$ $-9^{1}8893$ 3-1 $-9^{1}0324$ $-9^{1}0646$ $-9^{1}0957$ $-9^{1}1260$ $-9^{1}1553$ $-9^{1}8866$ $-9^{1}8836$ $-9^{1}28930$ $-9^{1}2866$ $-9^{1}8359$ 3-2 $-9^{1}3129$ $-9^{1}3363$ $-9^{1}390$ $-9^{1}3810$ $-9^{1}4024$ $-9^{1}4230$ $-9^{1}4429$ $-9^{1}4623$ $-9^{1}4810$ $-9^{1}9885$ 3-3 $-9^{1}5663$ $-9^{1}5335$ $-9^{1}5499$ $-9^{1}5568$ $-9^{1}5811$ $-9^{1}5959$ $-9^{1}6103$ $-9^{1}222$ $-9^{1}398$ $-9^{1}797$ $-9^{1}798$ $-9^{1}793$ $-9^{1}797$ $-9^{1}797$ $-9^{1}797$ $-9^{1}797$ $-9^{1}797$ $-9^{1}797$ $-9^{1}797$ $-9^{1}798$ $-9^{1}7938$ $-9^{1}8343$ $-9^{1}8338$ $-9^{1}8739$ $-9^{1}8383$ $-9^{1}8343$ $-9^{1}8338$ $-9^{1}8393$ $-9^{1}8383$ $-9^{1}8393$ $-9^{1}9322$ $-9^{1}3938$ $-9^{1}7939$ $-9^{1}7838$ $-9^{1}77799$ $-9^{1}7848$ $-9^{1}77799$ $-9^{1}7848$ $-9^{1}77799$ $-9^{1}7848$ $-9^{1}7848$ $-9^{1}79494$ $-9^{1}7848$ $-9^{1}794894$ $-9^{1}784833$ $-9^{1}8837$ $-9^$	2.6										9-5201
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			·9 ² 6636								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.8	·9 ² 7445									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.9	·9 ² 8134		·9 ¹ 8250	·9² 8305						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.0	·9 ² 8650	·9 ² 8604	·0² 8736	·0 ² 8777	·02 8817		•	_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.I										"y" 0999
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.2										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.3										·9· 4991
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			·9 ³ 6752	·9 ³ 6869							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.5	·03 767A									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-018460					-9-0140			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		03 8022	-018064					·9 ³ 8739			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-9+4094 -9+6092				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4-0	-0+6833									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						9 /34/					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							-9+0330	9* 6409			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· 1				-						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.5									-	
4.7							9-7310	·9*7442			
4.8 .9° 2067 .9° 2453 .9° 2822 .9° 3173 .9° 3508 .9° 3827 .9° 4131 .9° 4420 .9° 4696 .9° 4958			-05 876T			9.0250	9.0340	-9- 0419			
4.0 106 5 208 106 5 4 6 105 9 5 2 7 9 4 31 9 4420 0 4090 0 4958	4.8		062482			9-0931					
9° 5289 ·9° 5475 ·9° 5652 ·9° 66821 ·9° 6981		-06 5208	9 433		9-3173	9-3508		·9º 4131			
		9 3400	9 3440	9-2073	-A- 2000	·9· 0094	·9° 0289	·9° 6475	-9° 6652	·9°6821	·9° 698 I

Example: $\Phi(3.57) = .9^{3}8215 = 0.9998215$.

Steel Data Sheet

(EN 1993-1-1)

Table 3.1: Nominal values of yield strength $f_{\rm y}$ and ultimate tensile strength $f_{\rm u}$ for hot rolled structural steel

Standard	Nominal thickness of the element t [mm]							
and	t ≤ 40) mm	$40 \text{ mm} < t \le 80 \text{ mm}$					
steel grade	f _y [N/mm ²]	$f_u [N/mm^2]$	f _y [N/mm ²]	$f_u [N/mm^2]$				
EN 10025-2								
S 235	235	360	215	360				
S 275	275	430	255	410				
S 355	355	AC_2 490 $\langle AC_2 \rangle$	335	470				
S 450	440	550	410	550				

Tension members

Yielding of the gross cross-section A_g :

$$N_{pl,Rd} = \frac{A_g f_y}{\gamma_{M0}}$$

Fracture of the net cross-section *A_n*:

$$N_{u,Rd} = \frac{0.9A_n f_u}{\gamma_{M2}}$$

Staggered bolt holes:

$$A_n = A_g - n_b d_0 t + \sum_{staggers} \frac{s_p^2 t}{4s_g}$$

 d_0 = bolt hole diameter

 n_b = number of bolt lines across the member

Bolt size	12	14	16	18	20	22	24	27 to 36
Clearance (mm)	1	1	2	2	2	2	2	3

Reduction factor for shear lag in eccentrically connected angles:

Pitch	\mathbf{p}_1	\leq 2,5 d _o	\geq 5,0 d _o
2 bolts	β_2	0,4	0,7
3 bolts or more	β_3	0,5	0,7

Column buckling

BS EN 1993-1-1:2005 EN 1993-1-1:2005 (E)

Table 6.2: Selection of buckling curve for a cross-section

	Cross section		Limits	Buckling about axis	Bucklin S 235 S 275 S 355 S 420	g curve S 460
		• 1,2	$t_f \le 40 \text{ mm}$	y - y z - z	a b	$a_0 a_0$
ections	h y y	< q/µ	$40 \text{ mm} < t_f \le 100$	y - y z - z	b c	a a
Rolled se	Rolled sections	≤ 1,2	$t_f \leq 100 \text{ mm}$	y - y z - z	b c	a a
		h/h ≤	t _f > 100 mm	y-y z-z	d d	c c
ed ons			$t_f \le 40 \text{ mm}$	y - y z - z	b c	b c
Welded I-sections	yy yy z	$t_{\rm f}$ > 40 mm		y - y z - z	c d	c d
Hollow sections			hot finished	any	a	a ₀
Hol			cold formed	any	с	с
Welded box sections	$\begin{array}{c c} & & & & & \\ & & & & \\ h & y & & & \\ \end{array}$	ge	enerally (except as below)	any	b	b
Welde		thi	ick welds: $a > 0.5t_f$ $b/t_f < 30$ $h/t_w < 30$	any	с	с
U-, T- and solid sections		-(any	с	с
L-sections				any	b	b

Figure 6.4: Buckling curves

6.3.1.2 Buckling curves

(1) For axial compression in members the value of χ for the appropriate non-dimensional slenderness $\overline{\lambda}$ should be determined from the relevant buckling curve according to:

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda}^2}} \quad \text{but } \chi \le 1,0$$
(6.49)
where $\Phi = 0.5 \left[1 + \alpha \left(\overline{\lambda} - 0.2 \right) + \overline{\lambda}^2 \right]$
 $\overline{\lambda} = \sqrt{\frac{Af_y}{N_{cr}}} \quad \text{for Class 1, 2 and 3 cross-sections}$
 $\overline{\lambda} = \sqrt{\frac{A_{\text{eff}} f_y}{N_{cr}}} \quad \text{for Class 4 cross-sections}$

- α is an imperfection factor
- $N_{cr} \,$ is the elastic critical force for the relevant buckling mode based on the gross cross sectional properties.

(2) The imperfection factor α corresponding to the appropriate buckling curve should be obtained from Table 6.1 and Table 6.2.

Table 6.1: Imperfection factors for buckling curves

Buckling curve	a_0	а	b	с	d
Imperfection factor α	0,13	0,21	0,34	0,49	0,76

Local buckling

$$\sigma_{cr} = K \frac{\pi^2 E}{12(1-\nu^2)} \left(\frac{t}{b}\right)^2$$

where b is the width of the plate and t is its thickness.

For plates in uniform longitudinal compression:

- K = 4 for internal elements.
- K = 0.43 for outstand elements.

*) ψ≤-1	applies where either	the compression stress $\sigma \leq t$	f_y or the tensile strain $\varepsilon_y > f_y/E$

Beams

Elastic lateral-torsional buckling moment of a beam with doubly symmetric cross-section:

$$M_{cr,0} = \frac{\pi^2 E I_z}{L_{cr}^2} \left[\frac{I_w}{I_z} + \frac{L_{cr}^2 G I_T}{\pi^2 E I_z} \right]^{0.5}$$

where:

 I_T = torsional constant

 I_w = warping constant (= $d^2 I_{yy}/4$ for I-beams, with *d* the distance between the centerlines of the flanges)

 I_z = second moment of area about the minor axis

G = shear modulus

 L_{cr} = unrestrained length for lateral-torsional buckling

In the case of non-uniform bending:

$$M_{cr} = C_1 M_{cr,0}$$

5	
	1.132
	1.285
	1.365
	1.565
	1.046

(EN 1993-1-1)

6.3.2.2 Lateral torsional buckling curves – General case

(1) Unless otherwise specified, see 6.3.2.3, for bending members of constant cross-section, the value of χ_{LT} for the appropriate non-dimensional slenderness $\overline{\lambda}_{LT}$, should be determined from:

$$\chi_{LT} = \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \overline{\lambda}_{LT}^2}} \text{ but } \chi_{LT} \le 1,0$$
(6.56)

where $\Phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda}_{LT} - 0.2 \right) + \overline{\lambda}_{LT}^2 \right]$

 α_{LT} is an imperfection factor

$$\overline{\lambda}_{\text{LT}} = \sqrt{\frac{W_{y}f_{y}}{M_{cr}}}$$

M_{cr} is the elastic critical moment for lateral-torsional buckling

(2) M_{cr} is based on gross cross sectional properties and takes into account the loading conditions, the real moment distribution and the lateral restraints.

NOTE The imperfection factor α_{LT} corresponding to the appropriate buckling curve may be obtained from the National Annex. The recommended values α_{LT} are given in Table 6.3.

Table 6.3: Recommended values for imperfection factors for lateral torsional buckling curves

Buckling curve	а	b	с	d
Imperfection factor α_{LT}	0,21	0,34	0,49	0,76

The recommendations for buckling curves are given in Table 6.4.

Cross-section	Limits	Buckling curve
Rolled I-sections	$h/b \le 2$	a
Koneu I-sections	h/b > 2	b
Welded I-sections	$h/b \le 2$	с
werded 1-sections	h/b > 2	d
Other cross-sections	-	d

 Table 6.4: Recommended values for lateral torsional buckling curves for crosssections using equation (6.56)

$$M_{b,Rd} = \chi_{LT} W_y \frac{f_y}{\gamma_{M1}}$$

Interaction between moment and shear in the cross-section:

$$f_{yr} = (1 - \rho)f_y$$
 $\rho = \left(\frac{2V_{Ed}}{V_{pl,Rd}} - 1\right)^2$ (for $V_{Ed} > 0.5_{Vpl,Rd}$)

$$M_{y,V,Rd} = \left[W_{pl,y} - \frac{\rho A_W^2}{4t_w}\right] \frac{f_y}{\gamma_{M0}} \le M_{y,c,Rd}$$

where
$$A_w = h_w t_w$$

<u>Shear</u>

$$V_{pl,Rd} = A_{\nu} \frac{(f_{\nu}/\sqrt{3})}{\gamma_{M0}}$$

$$A_v = A - 2bt_f + (t_w + 2r)t_f \qquad \text{but} \ge h_w t_w$$

where:

- *b* = flange width
- t_f = flange thickness
- t_w = web thickness
- h_w = web height
- *r* = transition radius between web and flange

Shear buckling:

$$\tau_{cr} = K \frac{\pi^2 E}{12(1-\nu^2)} \left(\frac{t}{b}\right)^2$$

$$K = 5.34 + \frac{4}{(a/b)^2} \quad \text{if } a > b$$

$$K = 5.34 + \frac{4}{(b/a)^2} \quad \text{if } b > a$$

Shear buckling needs to be checked if: $\frac{h_w}{t_w} \ge 72\varepsilon$

where h_w is the web height, t_w is the web thickness and $\varepsilon = \sqrt{235/f_y}$ (with f_y in MPa).

$$V_{b,Rd} = \chi_w \frac{(f_y/\sqrt{3})h_w t_w}{\gamma_{M1}} \qquad \qquad \lambda_w = 0.76 \sqrt{\frac{f_y}{\tau_{cr}}}$$

Table 5.1: Contribution from the web χ_{w} to shear buckling resistance

	Rigid end post	Non-rigid end post
$\overline{\lambda}_{\rm w} < 0.83 / \eta$	η	η
$0,83/\eta \le \overline{\lambda}_{w} < 1,08$	0,83/ Ā _w	0,83/ $\overline{\lambda}_{w}$
$\overline{\lambda}_{\rm w} \ge 1,08$	$1,37/(0,7+\overline{\lambda}_{w})$	0,83/ λ w

Web crippling:

$$\bar{\lambda}_F = \sqrt{\frac{F_y}{F_{cr}}} = \sqrt{\frac{l_y t_w f_{yw}}{F_{cr}}} \qquad F_{cr} = 0.9 k_F E \frac{t_w^3}{h_w}$$
$$\chi_F = \frac{0.5}{\bar{\lambda}_F} \le 1.0 \qquad F_{Rd} = \chi_F \frac{l_y t_w f_{yw}}{\gamma_{M1}}$$

IOF/ITF:	$\ell_y = s_s$	$+2t_f\left(1+\sqrt{m_1+m_2}\right) \leq a$	$m_1 = \frac{f_{yf}b_f}{f_{yyf}t_y}$	
EOF:	min -	$\ell_{y} = \ell_{e} + t_{f} \sqrt{\frac{m_{1}}{2} + \left(\frac{\ell_{e}}{t_{f}}\right)^{2} + m_{2}}$	o yw w	if $\overline{\lambda}_F > 0.5$
		$\ell_{y} = \ell_{e} + t_{f} \sqrt{m_{1} + m_{2}}$	$m_2 = 0.02 \left(\frac{h_w}{t_f}\right)^2$ $m_2 = 0$	if $\overline{\lambda}_F \leq 0,5$
	with:	$\ell_{e} = \frac{k_{F}E t_{w}^{2}}{2 f_{yw}h_{w}} \le s_{s} + c$		

Deflections:

Vertical deflection	
Cantilevers	Length/180
Beams carrying plaster or other brittle finish	Span/360
Other beams (except purlins and sheeting rails)	Span/200
Purlins and sheeting rails	To suit the characteristics of particular cladding

			C14	C16	C18	C22	C24	C27	C40
$f_{m,k}$	bending	MPa	14	16	18	22	24	27	40
$f_{t,0,k}$	tens	MPa	8	10	11	13	14	16	24
$f_{t,90,k}$	tens _	MPa	0.3	0.3	0.3	0.3	0.4	0.4	0.4
$f_{c,0,k}$	comp	MPa	16	17	18	20	21	22	26
fc,90,k	comp	MPa	4.3	4.6	4.8	5.1	5.3	5.6	6.3
$f_{v,k}$	shear	MPa	1.7	1.8	2.0	2.4	2.5	2.8	3.8
E _{0,mean}	tens mod	GPa	7	8	9	10	11	12	14
$E_{\theta,\theta 5}$	tens mod	GPa	4.7	5.4	6	6.7	7.4	8	9.4
E90,mean	tens mod _	GPa	0.23	0.27	0.3	0.33	0.37	0.4	0.47
G _{mean}	shear mod	GPa	0.44	0.50	0.56	0.63	0.69	0.75	0.88
ρ_k	density	kg/m ³	290	310	320	340	350	370	420
P mean	density	kg/m ³	350	370	380	410	420	450	500

3D3 – Structural Materials and Design – Timber Datasheet

Table 11.2 Selected strength classes - characteristic values according to EN 338 [11.3]-Coniferous Species and Poplar (Table 1)

Table 3.1.7 Values of k _{mod}				
Material/		Service class		
load-duration class		2	3	
Solid and glued laminated				
timber and plywood				
Permanent	0.60	0.60	0.50	
Long-term	0.70	0.70	0.55	
Medium-term	0.80	0.80	0.65	
Short-term	0.90	0.90	0.70	
Instantaneous	1.10	1.10	0.90	

Selected Modification Factors for Service Class and Duration of Load [11.2]

[11.2] DD ENV 1995-1-1 :1994 Eurocode 5: Design of timber structures – Part 1.1 General rules and rules for buildings [11.3] BS EN 338:1995 Structural Timber – Strength classes

<u>Flexure</u> - Design bending strength $f_{m,d} = k_{mod}k_hk_{crit}k_{ls}f_{m,k} / \gamma_m$

<u>Shear</u> – Design shear stress $f_{v,d} = k_{mod}k_{ls}f_{v,k} / \gamma_m$

<u>Bearing</u> – Design bearing stress $f_{c,90,d} = k_{ls}k_{c,90}k_{mod}f_{c,90,k} / \gamma_m$ <u>Stability</u> – Relative slenderness for bending $\lambda_{rel,m} = \sqrt{f_{m,k} / \sigma_{m,crit}}$

"For beams with an initial lateral deviation from straightness within the limits defined in chapter 7, k_{crit} may be determined from (5.2.2 c-e)"

$$1 \qquad \text{for} \qquad \lambda_{rel,m} \le 0.75 \qquad (5.2.2c)$$

$$k_{crit} = \begin{cases} 1.56 - 0.75\lambda_{rel,m} & \text{for } 0.75 < \lambda_{rel,m} \le 1.4 \\ 0.75 < \lambda_{rel,m} \le 1.4 \end{cases}$$
(5.2.2d)

$$1/\lambda_{rel,m}^2 \quad \text{for} \quad 1.4 < \lambda_{rel,m}$$
 (5.2.2e)

Extract from [11.2] - k_{crit}

<u>Joints</u>

For bolts and for nails *with* predrilled holes, the characteristic embedding strength $f_{h,0,k}$ is: $f_{h,0,k} = 0.082(1-0.01d)\rho_k \text{ N/mm}^2$

For bolts up to 30 mm diameter at an angle α to the grain:

 $f_{h,\alpha,k} = \frac{f_{h,0,k}}{k_{90}\sin^2 \alpha + \cos^2 \alpha}$ for softwood $k_{90} = 1.35 + 0.015d$ for hardwood $k_{90} = 0.90 + 0.015d$

Design yield moment for round steel bolts: $M_{y,d} = (0.8 f_{u,k} d^3)/(6\gamma_m)$ Design embedding strength e.g. for material 1: $f_{h,1,d} = (k_{mod,1} f_{h,1,k})/\gamma_m$

Design load-carrying capacities for fasteners in single shear

$$\int f_{h,1,d} t_1 d$$
 (6.2.1a)

$$\int f_{h,1,d} t_2 d\beta \tag{6.2.1b}$$

$$\frac{\int f_{h,1,d} t_1 d}{1+\beta} \left[\sqrt{\beta + 2\beta^2 \left[1 + \frac{t_2}{t_1} + \left(\frac{t_2}{t_1}\right)^2 \right]} + \beta^3 \left(\frac{t_2}{t_1}\right)^2 - \beta \left(1 + \frac{t_2}{t_1}\right) \right]$$
(6.2.1c)

$$R_{d} = \min \left\{ 1.1 \frac{f_{h,1,d} t_{1} d}{2 + \beta} \left[\sqrt{2\beta(1+\beta) + \frac{4\beta(2+\beta)M_{y,d}}{f_{h,1,d} d t_{1}^{2}}} - \beta \right]$$
(6.2.1d)

$$\left[1.1\frac{f_{h,1,d} t_2 d}{1+2\beta} \left[\sqrt{2\beta^2(1+\beta) + \frac{4\beta(1+2\beta)M_{y,d}}{f_{h,1,d} d t_2^2}} - \beta\right]$$
(6.2.1e)

$$\left[1.1\sqrt{\frac{2\beta}{1+\beta}}\sqrt{2M_{y,d}f_{h,1,d}\ d}\right]$$
(6.2.1f)

3D3 – Structural Materials and Design – Masonry Datasheet

Bearing or crushing resistance per unit length

$$P_b = \frac{f_k t}{\gamma_m}$$

Buckling resistance per unit length

$$P_b = \frac{\beta f_k t}{\gamma_m}$$

Graph for capacity reduction factor β

Flexural resistance per unit length

 $M = \frac{f_{kx} Z}{\gamma_m}$

3D3 – Structural Materials and Design – Glass Datasheet

Explicit relationship between the flaw opening stress history and the initial flaw size:

$$\int_{0}^{t_{f}} \sigma^{n}(t) dt \approx \frac{2}{(n-2)v_{0} K_{IC}^{-n} \left(Y \sqrt{\pi}\right)^{n} a_{i}^{(n-2)/2}}$$

Idealised v–K relationship:

2-parameter Weibull distribution:

$$P_f = 1 - \exp\left[-kA\left(\sigma_f - f_{rk}\right)^m\right]$$

Stressed surface area factor (uniform stress):

$$\frac{\sigma_f}{\sigma_{A0}} = \left(\frac{A_0}{A_f}\right)^{1/m} = k_A$$

Laminated glass equivalent thickness for bending deflection:

$$h_{eq,\delta} = \sqrt[3]{(1-\varpi)\sum_{i}h_{i}^{3} + \varpi\left(\sum_{i}h_{i}\right)^{3}}$$

Laminated glass equivalent thickness for bending stress:

$$h_{eq,\sigma} = \sqrt{\frac{(h_{eq,\delta})^3}{(h_i + 2\varpi h_{m,i})}}$$

Load duration factor (constant stress history):

$$\frac{\sigma_f}{\sigma_{t0}} = \left(\frac{t_0}{t_f}\right)^{1/n} = k_{\text{mod}}$$

G(t) of PVB and SGP interlayers:

Glass design strength:

$$f_{gd} = \frac{k_{\text{mod}} k_A f_{gk}}{\gamma_{mA}} + \frac{f_{rk}}{\gamma_{mV}}$$

Stress-history (load duration) interaction equation:

$$\frac{\sigma_{1,S}}{f_{gd,S}} + \frac{\sigma_{1,M}}{f_{gd,M}} + \frac{\sigma_{1,L}}{f_{gd,L}} \le 1$$

Empirical stress concentration for bolted connections:

$$K_t = 1.5 + 1.25 \left(\frac{H}{d} - 1\right) - 0.0675 \left(\frac{H}{d} - 1\right)^2$$

where

$$K_t = \frac{\sigma_{\max} \left(H - d \right) t}{P}$$

3D3 – Structural Materials and Design – Concrete Datasheet (pg 1 of 2)

	Span/effective depth ratio		
Structural system	EC	2*	
	high	light	
1. Simply supported beam, one-way or two-way spanning simply supported slab	14	20	
2. End span of continuous beam or one-way continuous slab or two-way spanning slab continuous over one long side	18	26	
3. Interior span of beam or one-way or two-way spanning slab	20	30	
4. Slab supported on columns without beams (flat slab), based on longer span	17	24	
5. Cantilever	6	8	

highly stressed $\rho = 1.5\%$ and lightly stressed $\rho = 0.5\%$ (slabs are normally assumed to be lightly stressed) *Table 7.4N, NA.5 [1.2]

Table 1.2 Minimum member sizes and cover (to main reinforcement) for initial design of continuous members

Member	Fire resistanceMinimum			dimension, mm	
		4 hours	2 hours	1 hour	
Columns fully exposed to fire	width	450	300	200	
Beams	width	240	200	200	
	cover	70	50	45	
Slabs with plain soffit	thickness	170	125	100	
	cover	45	35	35	

Extracts from Table 4.1 [1.1]

Fig 1.1 Interaction diagram from [1.3]

[1.1] Manual for the design of reinforced concrete building structures to EC2, IStructE, ICE, March 2000 - FM 507
[1.2] Eurocode 2: Design of concrete structures, EN 1992-1-1:2004, UK National Annex –NA to BS EN 1992-1-1:2004
[1.3] Structural design. Extracts from British Standards for Students of Structural design. PP7312:2002, BSi

3D3 – Structural Materials and Design – Concrete Datasheet (pg 2 of 2)

<u>Flexure</u>

Under-reinforced – singly reinforced $M_{u} = \frac{A_{s}f_{y}d(1-0.5x/d)}{\gamma_{s}}$ $\frac{x}{d} = \frac{\gamma_{c}A_{s}f_{y}}{\gamma_{s}0.6f_{cu}bd}$

if
$$x/d = 0.5$$

 $M_u = 0.225 f_{cu}bd^2 / \gamma_c$

Balanced section

$$\rho_b = \frac{A_s}{bd} = \frac{\gamma_s 0.6 f_{cu}}{\gamma_c f_y} \cdot \frac{\varepsilon_{cu}}{\varepsilon_y + \varepsilon_{cu}}$$

<u>Shear</u>

Without internal stirrups

 $V_{Rd,c} = \left[\frac{0.18}{\gamma_c}k(100\rho_1 f_{ck})^{1/3}\right] b_w d \ge (0.035k^{3/2} f_{ck}^{1/2}) b_w d$ where: f_{ck} is the characteristic concrete compressive cylinder strength (MPa). $k = 1 + \sqrt{200/d} \le 2.0$ (d in mm) $\rho_l = A_s/b_w d \le 0.02$

With internal stirrups

- Concrete resistance $V_{Rd,\max} = f_{c,\max} (b_w 0.9d) / (\cot \theta + \tan \theta)$ where: $f_{c,\max} = 0.6(1 - f_{ck} / 250) f_{cd}$

- Shear stirrup resistance $V_{Rd,s} = A_{sw} f_y (0.9d) (\cot \theta) / (s\gamma_s)$

<u>Columns – axial loading only</u>

$$\sigma_u = 0.6 \frac{f_{cu}}{\gamma_c} + \rho_c \frac{f_y}{\gamma_s}$$

Standard steel diameters (in mm)

6, 8, 10, 12, 16, 20, 25, 32 and 40