Qua)

$$
J=\frac{1}{3}\left(2 b t^{3}+4 b t^{3}+3 b t^{3}\right)=3 l t^{3}
$$

Warping is important because two flanges will bend when torsion applied leading to shear forces. These shear forces in the two flanges will carry some of the torque.
b) $y \uparrow$

$$
\begin{aligned}
x_{s} & =\frac{1}{9 b t}\left(l \cdot 2 l t+\frac{3}{2} b \cdot 3 b t\right)=\frac{13}{18} l \approx 0.72 b \\
y_{s} & =\frac{1}{9 l t}(4 b \cdot 2 l t+2 b \cdot 4 b t)=\frac{16}{9} b \approx 1.78 b \\
I_{x x} & =\frac{(4 l)^{3} t}{12}+4 b t(2 b)^{2}+2 l t(4 b)^{2}=\frac{160}{3} b^{3} t \approx 53.33 l^{3} t \\
I_{y y} & =\frac{(2 l)^{3} t}{12}+l^{2} \cdot 2 b t+\frac{(3 l)^{3} t}{12}+\left(\frac{3}{2} l\right)^{2} 3 b t \\
& =\frac{35 l^{3} t}{3} \approx 11.67 l^{3} t \\
I_{x y} & =4 b \cdot l \cdot 2 l t=8 l^{3} t \\
I_{x y} & =I_{5 t}+9 l t\left(\frac{13}{18} l\right)\left(\frac{16}{9} b\right)=-\frac{32}{9} l^{3} t
\end{aligned}
$$

$$
\begin{aligned}
& I_{x x}=I_{s s}+9 b t \cdot\left(\frac{16}{9} l\right)^{2} \Rightarrow I_{s s}=\frac{224}{9} b^{3} t \\
& I_{y y}=I_{t t}+9 b t \cdot\left(\frac{13}{18} b\right)^{2} \Rightarrow I_{t t}=\frac{251}{36} b^{3} t \\
& I_{x y}=I_{s t}+9 b t\left(\frac{13}{18} l\right)\left(\frac{16}{9} b\right)=-\frac{32}{9} l^{3} t \\
& I_{s s} \approx 24.9 l^{3} t \quad I_{t t}=6.97 l^{3} t \quad I_{s t}=-3.56
\end{aligned}
$$

Eigenvalues $\quad I_{s^{\prime} s^{\prime}}=25.57 \mathrm{l}^{3} \mathrm{t} \quad I_{t i t}=6.29 \mathrm{l}^{3} \mathrm{t}$

$$
\binom{-5.23}{1},\binom{0.19}{1}
$$

c)

Shear centre should be slightly below the horizontal axis at a distance about $\frac{1}{4}(2 l+3 b)=\frac{5}{4} b$
d) According to the Data book $\frac{F l^{3}}{48 E I}$

Displacements

$$
\begin{aligned}
& \swarrow \frac{0.188 F l^{3}}{48 E 6.29 l^{3} t}=6.23 \cdot 10^{-4} \frac{\mathrm{Fl}^{3}}{E l^{3} t} \\
& \searrow \frac{0.982 \mathrm{Fl} l^{3}}{48 E 25.57 l^{3} t}=8.0 \cdot 10^{-4} \frac{\mathrm{Fl}^{3}}{E l^{3} t}
\end{aligned}
$$

Total displacement: $1.014 \cdot 10^{-3} \frac{\mathrm{Fl}^{3}}{E l^{3} t}$

Q2a) sagging hogging sagging hogging
i)

ii) Assuming both sides pinned: $\frac{w \ell^{2}}{8}$

Assuming bot sides clamped: $\frac{w l^{2}}{8}-\frac{w l^{2}}{12}=\frac{w l^{2}}{24}$

b) System has kinematic degree of indeterminacy one

Length of incl. beam 1.03l

Stiffness of joint B :

$$
K=\frac{4 E I}{2 l}+\frac{3 E I}{1.03 l}=4.91 \frac{E I}{l}
$$

Moment due to $F: \frac{2 F l}{8}=\frac{F l}{4}$

$$
\Rightarrow r=\frac{F l}{4} \frac{l}{4.9 E I}=0.051 \frac{F l^{2}}{E I}
$$

Moment at B

$$
\frac{F l}{4}-0.051 \frac{\mathrm{Fl}^{2}}{E I} \cdot \frac{4 E I}{2 l}=0.148 \mathrm{Fl}
$$

c) System has kinematic degree of indeterminacy two

$$
\begin{aligned}
& K_{11}=\frac{4 E I}{2 l}+\frac{3 E I}{1.03 l}=4.91 \frac{E I}{l} \quad(\text { like in }(i)) \\
& K_{12}=\frac{3 E I}{(1.03 l)^{2}} \sin \left(14.04^{\circ}\right)=0.686 \frac{E I}{l^{2}}
\end{aligned}
$$

$$
r_{1}=1 \text { and } r_{2}=0
$$

$$
K_{22}=\frac{E A}{2 \ell}+\frac{3 E I}{(1.03 l)^{3}} \sin (14.04)=0.5 \frac{E A}{l}+0.67 \frac{E I}{\ell^{3}}
$$

3042023 ,
Q3. (a) $u=\frac{1}{2} \int_{0}^{L} E I\left(\frac{d^{2} p}{d x^{2}}\right)^{2} d x$
lot. Strain Energy

$$
\begin{align*}
& \phi_{1}=x^{2}(L-x)=x^{2} L-x^{3} \\
& \phi^{\prime}=2 x-3 x^{2} \\
& \phi^{\prime \prime}=2 L-6 x=2(L-3 x) \\
& \left(\phi^{\prime \prime}\right)^{2}=4(L-3 x)^{2}=4\left(L^{2}-6 x L+9 x^{2}\right) \\
& U=\frac{1}{2} \operatorname{EI} 4 \int_{0}^{L}\left(L^{2}-6 x L+9 x^{2}\right) d x \\
& =2 E I\left[L^{2} x-3 x^{2} L+\frac{9 x^{2}}{3}\right]_{0}^{L} \\
& =2 E I L^{3}[1-3+3]=2 E I L^{3} \\
& w=\frac{1}{2} \int_{0}^{b}\left(\phi^{\prime}\right)^{2} d x=\frac{1}{2} \int_{0}^{L}\left(2 x L-3 x^{2}\right)^{2} d x \tag{End}\\
& =\frac{1}{2} \int_{0}^{L}\left(4 x^{2} L^{2}-12 x^{3} L+9 x^{4}\right) d x \\
& =\frac{1}{2}\left[\frac{4 x^{3} L^{2}}{\frac{3}{3}}-\frac{12 x^{4} L}{4}+\frac{9 x^{5}}{5}\right]_{0}^{L} \\
& =\frac{1}{2} L^{5}\left[\frac{4}{3}-3+\frac{9}{5}\right] \\
& =\frac{1}{2(15)} L^{5}[20-45+27]=\frac{L^{5}}{15}
\end{align*}
$$ shortening

Rayleigh Quotiat $P_{e r} \simeq U=\frac{2 E I}{15 / 15}=30 \mathrm{EI} \quad$ ($\left.30 \%\right]$ $\left.\approx \frac{\text { value }}{L^{2}}\right)$
b) Overestimate. Deflected shape assumed is not an eigenvector, and energy goes flat in eigendirection first. $[10 \%]$
c)

$$
\begin{aligned}
& P_{\text {Enter }}=\frac{\pi_{E I}^{2}}{L^{2}}, \quad, P_{\text {er }}=\frac{\Pi^{2} E I}{L_{e f t}^{2}}=\frac{30 E I}{L^{2}} \\
& \therefore L_{e f t}^{2}=\frac{\pi^{2}}{30} \quad L=\frac{\pi}{\sqrt{30}} L=0.574 L \quad\left(\begin{array}{c}
\text { True value } \\
L^{2} \\
\approx 0.7 L
\end{array}\right) \\
& {[10 \%] }
\end{aligned}
$$

$3 D 42023$ Q3 cottd
d) Pery-Rubectso deals with inelatic behaviour by halting the moment any is experienced. Ker i.e. stop at first yleld
e)

Euler column. $L=4 \mathrm{~m}$.

$$
\begin{aligned}
& \text { LHS } D=168.3 \mathrm{mn} \quad D_{\text {madell }}=155-8 \mathrm{~mm} \text {. } \\
& t=12.5 \mathrm{~mm} \\
& I=1868 \mathrm{~cm}^{4}=1868 \times 10^{-8} \mathrm{~m}^{4} \quad \text { Stractuen Deta } \\
& A=61.2 \mathrm{~cm}^{2}=61.2 \times 10^{-4} \mathrm{~m}^{2} \quad \text { Book. } \\
& P_{E}=\frac{\pi^{2} E I}{L^{2}}=\frac{\pi^{2}\left(210 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}\right)\left(1868 \times 10^{-8} \mathrm{~m} \mathrm{~m}^{4}\right)}{(4 \mathrm{~m})^{2}} \\
& =2419.8 \mathrm{kN} \\
& \sigma_{E}=\frac{2.420 \times 10^{6}}{61.2 \times 10^{-4}}=395.4 \mathrm{MPa} \\
& G_{1}=275 \mathrm{MPa} . \\
& \eta=0.003 \frac{\mathrm{~L}}{r} \quad r=\sqrt{\frac{I}{A}}=\sqrt{\frac{1868 \times 10^{-8}}{612 \times 10^{-4}}} \\
& \eta=0.003\left(\frac{4}{0.055}\right)=0.2174 \quad=0.0552 \mathrm{~m} \quad(=55.2 \mathrm{~mm}) \\
& \left(6_{y}-\sigma_{u r}\right)\left(6_{t}-\sigma_{c r}\right)=\eta 6_{u r} \sigma_{r} \\
& \left(1-\frac{6_{r}}{6_{4}}\right)\left(\frac{6_{g}}{6_{y}}-\frac{6_{c}}{6_{y}}\right)=\eta \frac{6_{r}}{6_{4}} \frac{6_{8}}{6_{4}} \\
& (1-c)(e-c)=\eta c e \quad c=\frac{b_{c r}}{\sigma_{y}} \quad e=\frac{\sigma_{b}}{\sigma_{y}} \\
& e-c-e c+c^{2}=\eta c e \\
& c^{2}-(1+e+\eta e) c+e=0 \\
& c^{2}-\Phi c+e=0, \quad c=\Phi \pm \sqrt{\Phi^{2}-4 e} \\
& e=\frac{395.4}{275}=1.438 \quad \Phi=1+e(1+\eta)=1+1.488(1+0.2774) \\
& =2.7506 \\
& c=\left(2.7506 \pm \sqrt{(2-7506)^{2}-4(1.488)}\right] / 2=0.702 \\
& \therefore \sigma_{c r}=0.702(275)=193 \mathrm{Mla} . \quad \therefore P_{c r}=\left(193 \times 10^{6}\right)\left(6.2 \times 10^{-4}\right)=1181 \mathrm{kN}
\end{aligned}
$$

3042023
Q4. a). For slope of load-deflection curve to be stittress, need load and deflection to be conjugate (Same place, same direction (for point lats)) (same shape for distributed loads).
Office, in studies of buckling, we plot axial load versus lateral deflection, so not conjugate.

At point A, slope is negative!! B slope is positive.
But these are same case, just reflected vertically.
Stiffness at condition A is NOT negative. Problem is P and w NoT conjugate.
($P_{\text {is conjugate to }} y$).

We con un' te down stiffness matrix wit θ_{B}, θ_{c} by inspectia.

$$
\therefore\left[\begin{array}{l}
M_{c} \\
M_{B}
\end{array}\right]=\frac{E I}{L}\left[\begin{array}{cc}
s & s c \\
s c & s+6
\end{array}\right]\left[\begin{array}{l}
\theta_{c} \\
\theta_{B}
\end{array}\right]
$$

$$
\begin{array}{r}
{\left[\begin{array}{l}
M_{C} \\
M_{B}
\end{array}\right]=\frac{E T}{E}\left[\begin{array}{cc}
s & s C \\
s C & s
\end{array}\right]\left[\begin{array}{l}
\theta_{C} \\
\theta_{B}
\end{array}\right]} \\
\text { (rom } B C+3(2)
\end{array}
$$

Now $M_{c}=0$, 10 applied nomost,

$$
\begin{aligned}
& \text { so } M_{C}=0=\frac{E I}{L}\left[s \theta_{C}+s c \theta_{B}\right] \Rightarrow \theta_{C}=-c \theta_{B} \\
& M_{B}=\frac{E I}{L}\left[\operatorname{sc} \theta_{C}+(s+6) \theta_{B}\right]=\frac{E I}{L}\left[-s c^{2}+s+6\right] \theta_{B}
\end{aligned}
$$

so rotation stiffer at B is $\frac{E t}{L}\left[s\left(1-c^{2}\right)+6\right]$

3042023
Q4 contd, b) ii) For üstabildty, reed $s\left(1-c^{2}\right)=-6$

P/ PE	s	c	$s\left(1-c^{2}\right)$		
1	2.4674	1	0		
1.2	2.0901	1.2487	-1.17		
1.4	1.6782	1.6557			
1.6	1.2240	2.4348	-6.03,		accept this
:---					

$$
\therefore \quad P_{c r} \approx 16\left(\pi^{2} \frac{E I}{L^{2}}\right)
$$

b) iii)

