1.

(a)

Total infiltration during the first two-hour period is:

$$
\begin{aligned}
& \int_{t_{1}}^{t_{2}} f \cdot d t=f_{c}\left(t_{2}-t_{1}\right)-\frac{1}{K_{f}}\left(f_{0}-f_{c}\right)\left(e^{-K_{f} t_{2}}-e^{-K_{f} t_{1}}\right) \\
& =2(2-0)-\frac{1}{1}(10-2)\left(e^{-2}-e^{0}\right)=10.92 \mathrm{~mm}
\end{aligned}
$$

The total excess rain in the first two-hour period is: $10 \times 2-10.92=9.08 \mathrm{~mm}$

The total infiltration during the second two-hour period is:

$$
\begin{aligned}
& \int_{t_{1}}^{t_{2}} f \cdot d t=f_{c}\left(t_{2}-t_{1}\right)-\frac{1}{K_{f}}\left(f_{0}-f_{c}\right)\left(e^{-K_{f} t_{2}}-e^{-K_{f} t_{1}}\right) \\
& =2(4-2)-\frac{1}{1}(10-2)\left(e^{-4}-e^{-2}\right)=4.94 \mathrm{~mm}
\end{aligned}
$$

The total excess rain in the first two-hour period is: $10 \times 2-4.94=15.06 \mathrm{~mm}$

The total volume of the excess flow in the first two-hour period is:

$$
9.08 \times 10^{-3} \times 1 \times 10^{6}=9080 \mathrm{~m}^{3}
$$

The total volume of the excess flow in the second two-hour period is:

$$
15.06 \times 10^{-3} \times 1 \times 10^{6}=15060 \mathrm{~m}^{3}
$$

The volume distribution of the excess flow due to the four-hour rain is:

Time (h)	$0-2$	$2-4$	$4-6$	$6-8$	$8-10$	$10-12$	$12-14$
First 2-hour rain (\%)	5	20	30	40	5		0
First 2-hour volume $\left(\mathrm{m}^{3}\right)$	454	1816	2724	3632	454		0
Second 2-hour rain (\%)		5	20	30	40	5	5
Second 2-hour volume $\left(\mathrm{m}^{3}\right)$		753	3012	4518	6024	753	0
Total volume $\left(\mathrm{m}^{3}\right)$	454	2569	5736	8150	6478	753	
Total flow rate $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	0.063	0.357	0.797	1.132	0.900	0.105	

(b)

The flow rate in the first one-hour period $\left(2.5 \mathrm{~m}^{3} \mathrm{~s}^{-1}\right)$ is entirely due to the first-hour 20 mm h^{-1} rain. Then, the second-hour $40 \mathrm{~mm} \mathrm{~h}^{-1}$ rain must produce a flow rate of $5.0 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ in the second one-hour period.

The recorded flow rate in the second hour is $8.6 \mathrm{~m}^{3} \mathrm{~s}^{-1}$, so the contribution from the $1^{\text {st }}$-hour rain to the $2^{\text {nd }}$-hour flow rate must be (8.6-5.0) $=3.6 \mathrm{~m}^{3} \mathrm{~s}^{-1}$.

Similarly, the discharge in the third one-hour period generated by the $20 \mathrm{~mm} \mathrm{~h}^{-1}$ rain occurring in the first hour is $(9.3-3.6 \times 2)=2.1 \mathrm{~m}^{3} \mathrm{~s}^{-1}$.

Examiner's comments:

The question could be answered by directly superposing the given 2-hour hydrograph to construct the required 4-hour hydrograph. A few candidates first plotted the S-curve and then derived either the 1-hour or 4-hour hydrograph. It is OK to use the derived 1-hour or 4-hour hydrograph, but the solution in this way is quite time-consuming.
2.
(a)
$R_{h}=\frac{5 \times 2.5}{5+5}=1.25 \mathrm{~m}$
For the river section:

$$
\begin{aligned}
& C=7.8 \ln \left(\frac{12.0 \cdot R_{h}}{k_{S}}\right)=7.8 \ln \left(\frac{12.0 \cdot 1.25}{0.25}\right)=31.9 \\
& S b=\frac{\Delta}{1000}
\end{aligned}
$$

For the cut-off channel:

$$
\begin{aligned}
& C=7.8 \ln \left(\frac{12.0 \cdot R_{h}}{k_{s}}\right)=7.8 \ln \left(\frac{12.0 \cdot 1.25}{0.005}\right)=62.4 \\
& S b=\frac{\Delta}{400}
\end{aligned}
$$

According to $U=C \sqrt{R_{h} S_{b}}$
The ratio is: $\frac{62.4 \times \sqrt{1.25 \times \frac{1}{400}}}{31.9 \times \sqrt{1.25 \times \frac{1}{1000}}}=3.1$
(b)

$$
\begin{aligned}
& \frac{d h}{d x}=\frac{S_{b}-S_{f}}{1-F r^{2}} \\
& S_{f}=0 \text {, then } \frac{d h}{d x}=\frac{S_{b}}{1-F_{r}^{2}}, N \cdot B . S_{b}=-\frac{d z_{b}}{d x}, \eta=z_{b}+h \\
& \frac{d h}{d x}-\frac{1}{1-F_{r}^{2}} S_{b}=0 \Rightarrow \frac{d h}{d x}+\frac{1}{1-F r^{2}} \frac{d z_{b}}{d x}=0 \\
& \frac{d h}{d x}+\frac{1-F_{r}^{2}}{1-F_{r}^{2}} \frac{d z_{b}}{d x}+\frac{F_{r}^{2}}{1-F_{r}^{2}} \frac{d z_{b}}{d x}=0 \\
& \Rightarrow \frac{d \eta}{d x}=-\frac{F_{r}^{2}}{1-F_{r}^{2}} \frac{d z_{b}}{d x}
\end{aligned}
$$

(c)

We can easily prove that A_{1} is in the disturbed zone. Hence, A must be on the vertical axis.
The positive line equation crossing A and A_{1} is $\frac{d x}{d t}=U+\sqrt{g h}$

$$
\begin{equation*}
\frac{200}{100-t_{A}}=U_{A}+\sqrt{g h_{A}} \tag{i}
\end{equation*}
$$

Along the negative line between A and the intersection point on x axis, we have:

$$
\begin{equation*}
U_{A}-2 \sqrt{g h_{A}}=U_{0}-2 \sqrt{g h_{0}}=-8.90 \tag{ii}
\end{equation*}
$$

Then, Equation (i) becomes:

$$
\begin{aligned}
& \frac{200}{100-t_{A}}=-8.90+3 \sqrt{g h_{A}}=-8.90+3 \sqrt{9.81 \times\left(1.5+0.002 t_{A}\right)^{2}} \\
& \frac{200}{100-t_{A}}=-8.90+3 \sqrt{9.81} \times\left(1.5+0.002 t_{A}\right)=0.0188 t_{A}+5.19 \\
& t_{A}=69.2 \mathrm{~s}
\end{aligned}
$$

So, $h_{A}=(1.5+0.002 \times 69.2)^{2}=2.68 \mathrm{~m}$,
From Equation (ii), $U_{A}=-8.90+2 \sqrt{g h_{A}}=1.35 \mathrm{~m} / \mathrm{s}$
$\mathrm{q}=3.62 \mathrm{~m}^{2} / \mathrm{s}$

Examiner's comments:

In (a), some candidates did not notice the different bed slopes of the meandering reach and the cutoff channel. In (b), several argued the water depth decrease over a hump, which alone could not explain the water surface drop.
(3)
(a.i) Given $d=0.2 \mathrm{~mm}$, then $d_{*}=d \cdot\left(\frac{g(s-1)}{v^{2}}\right)^{1 / 3}=0.0002 \times\left(\frac{9.81(2.65-1)}{10^{-12}}\right)^{1 / 3}=5.06$
$w_{S}=\frac{v}{d}\left[\sqrt{10.36^{2}+1.049 \cdot d_{*}{ }^{3}}-10.36\right]=\frac{10^{-6}}{0.0002}\left[\sqrt{10.36^{2}+1.049 \cdot 5.06^{3}}-10.36\right]$
$w_{s}=0.026 \mathrm{~m} / \mathrm{s}$
$\frac{\bar{c}(z)}{\bar{c}(a)}=\left(\frac{h-z}{z} \cdot \frac{a}{h-a}\right)^{\frac{w_{S}}{k u_{*}}}$
$\frac{0.0001}{0.1}=\left(\frac{3-2}{2} \cdot \frac{0.01}{3-0.01}\right)^{\frac{0.026}{0.4 u_{*}}}$
$u^{*}=0.06 \mathrm{~m} / \mathrm{s}=\sqrt{g h S_{b}}$
$S_{b}=1.23 \times 10^{-4}$
(a.ii) $\frac{u_{*}}{w_{s}}=2.3, \frac{u_{*} d}{v}=12$

Using Liu's Diagram, Transition Zone (between Dunes and Antidunes).
(a.iii)
$\bar{c}(x, y)=\frac{\dot{M} / h}{U \sqrt{4 \pi \frac{x}{U} D_{y}}} \exp \left(-\frac{y^{2}}{4 D_{y} x / U}\right)$
$D_{y}=D_{t y}=0.15 h u_{*}=0.15 \times 3 \times 0.06=0.027$
$0.5=2 \times \frac{5 / 3}{U \sqrt{4 \pi \frac{150}{U} 0.027}} \exp (-0)$
$U=0.87 \mathrm{~m} / \mathrm{s}$
From $U=C \sqrt{R_{h} S_{b}}$

$$
\begin{aligned}
& 0.87=C \sqrt{3 \times 1.23 \times 10^{-4}} \\
& C=45.3=7.8 \ln \left(\frac{12.0 \times 3}{k_{s}}\right) \\
& K_{s}=0.11 \mathrm{~m}
\end{aligned}
$$

(b)

Hydraulic Design Charts

Darcy-Weisbach equation: $\quad H_{f}=\lambda \cdot \frac{\mathrm{L}}{\mathrm{D}} \cdot \frac{\mathrm{U}^{2}}{2 \mathrm{~g}}$
Colebrook-White formula: $\frac{1}{\sqrt{\lambda}}=-2 \log _{10}\left(\frac{\mathrm{k}_{\mathrm{s}}}{3.7 \mathrm{D}}+\frac{2.51}{\operatorname{Re} \sqrt{\lambda}}\right)$
The friction factor can be eliminated by combining these two equations.
Substituting $\sqrt{\lambda}=\frac{\sqrt{2 \mathrm{~g} S_{f} \mathrm{D}}}{\mathrm{U}}$ and $\mathrm{Re}=\frac{U D}{v}$ into Colebrook-White formula:

$$
U=-2 \sqrt{2 g S_{f} D} \cdot \log _{10}\left(\frac{k_{s}}{3.7 D}+\frac{2.51 v}{D \sqrt{2 g S_{f} D}}\right)
$$

v for water depends on temperature; $\mathbf{g}=9.81 \mathbf{m}^{2} / \mathrm{s} ; \boldsymbol{k}_{\mathrm{s}}$ depends on the pipe material. If $v_{,} g$ and k_{s} are fixed, then the above equation gives the relationship between three variables: $\mathbf{U}, \mathbf{S}_{\mathbf{f}}$ and \mathbf{D}. The equation $\mathrm{Q}=U \pi \mathrm{D}^{2} / 4$ introduces one extra variable: Q. So, these 2 equations contain 4 variables in total. Given any two of the variables, the other two can be determined.

Examiner's comments:

Some forgot to consider the influence of the image source in (a.iii). The pipe design charts in (b) were generally well explained, but a few did not make it clear that the roughness height, fluid viscosity coefficient and gravitational acceleration were deemed constants in each chart.
4.
(a)

Relative roughness height: $\frac{k_{s}}{D}=0.0002$
Assuming hydraulically rough, $\lambda=0.01375$
$30=\left(\lambda \frac{L}{D}\right) \frac{U^{2}}{2 g}=\left(0.01375 \frac{1000}{0.225}\right) \frac{U^{2}}{2 \times 9.81}$
$U=3.1 \mathrm{~m} / \mathrm{s}$
$\operatorname{Re}=\frac{3.1 \times 0.225}{10^{-6}}=7 \times 10^{5}$,
Refined friction factor is: $\boldsymbol{\lambda}=0.0153$
$30=\left(\lambda \frac{L}{D}\right) \frac{U^{2}}{2 g}=\left(0.0153 \frac{1000}{0.225}\right) \frac{U^{2}}{2 \times 9.81}$
$\mathrm{U}=2.94 \mathrm{~m} / \mathrm{s}$
$\operatorname{Re}=\frac{2.94 \times 0.225}{10^{-6}}=6.6 \times 10^{5}$,
Accept.
$\mathrm{Q}=116.8$ litre/s
(b) When the flow rate is 200 litre/s,
$U=5.03 \mathrm{~m} / \mathrm{s}, \operatorname{Re}=1.13 \times 10^{6}$
Friction factor is: $\lambda=0.0148$
Required pump head: $-30+\left(\lambda \frac{L}{D}\right) \frac{U^{2}}{2 g}=54.8 \mathrm{~m}$
So, $Q_{2}=200$ litre $/ \mathrm{s}, H_{2}=54.8 \mathrm{~m}$
From the figure below, $Q_{1}=184$ litre $/ \mathrm{s}, H_{1}=46 \mathrm{~m}$
According to either $\frac{Q_{2}}{N_{2}}=\frac{Q_{1}}{N_{1}}$ or $\frac{H_{2}}{N_{2}{ }^{2}}=\frac{H_{1}}{N_{1}{ }^{2}}$, where $\mathrm{N}_{1}=1000 \mathrm{rpm}$, we get N_{2}.

$$
\begin{aligned}
\frac{200}{N_{2}} & =\frac{184}{1000} \Rightarrow \mathrm{~N}_{2}=1087 \mathrm{rpm} \\
\frac{54.8}{N_{2}{ }^{2}} & =\frac{46.0}{1000^{2}} \Rightarrow \mathrm{~N}_{2}=1091 \mathrm{rpm}
\end{aligned}
$$

Examiner's comments:

A few simply did many trial-and-error calculations in (a), rather than designing an iterative procedure. Most of the mistakes in (b) arose from the wrong homologous operation points of the pump. Quite a few plotted the system curve, which was not necessary.

