$0.1 \quad a-$
(ii) The shape function for Node 3 is

$$
N^{3}=\frac{y}{2 L}
$$

The stiffness matrix in plain strain elasticity writes $K=\left(B^{e}\right)^{\top} D B^{e} A^{e} \quad\left(B^{e}\right.$ is constant over the element)
where $D=\frac{E}{(1+\nu)(1-2 \nu)}\left[\begin{array}{ccc}(1-\nu) \nu & 0 \\ \omega & (1-\nu) & 0 \\ 0 & 0 & (1-2 \nu) / 2\end{array}\right]$
For node 3

$$
\begin{aligned}
\frac{\beta}{3}_{e}^{e}= & {\left[\begin{array}{cc}
\frac{\partial N^{3}}{\partial x} & 0 \\
0 & \frac{\partial N^{3}}{\partial y} \\
\frac{\partial N^{3}}{\partial y} & \frac{\partial N^{3}}{\partial x}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & 1 / 2 L \\
1 / 2 L & 0
\end{array}\right] } \\
\left(B_{3}^{e}\right)^{\top} D\left(B_{3}^{e}\right) & =\left[\begin{array}{lll}
0 & 0 & 1 / 2 L \\
0 & 1 / 2 L & 0
\end{array}\right]\left[\begin{array}{cc}
0 & \nu / 2 L \\
0 & (1-\nu) / 2 L \\
(1-2 L) & 0
\end{array}\right] \frac{E}{(1+\nu)(1-2 L)} \\
& =\frac{E}{(1+\omega)(1-2 L)}\left[\begin{array}{cc}
\left.\begin{array}{cc}
(1-2 \omega) \\
2 & \frac{1}{4 L^{2}} \\
0 & 0 \\
0 & (1-\nu) \frac{1}{4 L^{2}}
\end{array}\right] \\
A^{e}=L^{2} & \Rightarrow K^{3}=\frac{E}{(1+L)(1-2 U)}\left[\begin{array}{cc}
\frac{(1-2 \nu)}{8} & 0 \\
0 & \frac{(1-L)}{4}
\end{array}\right]
\end{array} .\right.
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& f_{e}^{3}=-\rho_{s} g\left[\begin{array}{l}
0 \\
A^{e} / 3
\end{array}\right]+\rho_{w} g \int_{0}^{2 L}(2 L-y) N^{3}(0, y) d y\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& f_{e}^{3}=-\rho_{s} g \frac{L^{2}}{3}\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\rho_{w} g\left[\frac{y^{2}}{2}-\frac{1}{2 L} \frac{y^{3}}{3}\right]_{0}^{2 L}\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

$$
f_{e}^{3}=-\rho_{s} g \frac{L^{2}}{3}\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\frac{\rho_{w g}(2 L)^{2}}{6}\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

(iii) No. The mesh should be refined.
$b-i$

$$
\begin{aligned}
& x=\left[N^{1} N^{2} N^{3} N^{4} N^{5} N^{6}\right]\left[\begin{array}{l}
0 \\
L \\
0 \\
L / 2 \\
\alpha \\
0
\end{array}\right] \\
& x=\xi L+\xi \eta(4 d-2 L) \\
& y=\left[N^{1} N^{2} N^{3} N^{4} N^{5} N^{6}\right]\left[\begin{array}{l}
0 \\
0 \\
2 L \\
0 \\
L
\end{array}\right]
\end{aligned}
$$

$$
y=2 L \eta
$$

(ii) $J^{e}=\left[\begin{array}{cc}\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}\end{array}\right]=\left[\begin{array}{ll}L+\eta(4 d-2 L) & 0 \\ \xi(4 d-2 L) & 2 L\end{array}\right]$
Siffness matrix:

Siffness matrix:

$$
\begin{aligned}
& \text { Siffness matrix: } \\
& K^{e}=\sum_{I=1}^{N} \sum_{J=1}^{N}\left(B^{e}\left(\xi_{I}, \eta_{J}\right)\right)^{T} D B^{e}\left(\xi_{I}, \eta_{J}\right)\left|J^{e}\left(\xi, \xi_{J}\right)\right| \omega_{I} \omega_{J} \\
& \quad \text { and }\binom{\partial N^{i} / \partial x}{\partial N^{i} / \partial y}=\left(J^{e}\right)^{-1}\left(\begin{array}{c}
\partial N / \partial \xi \\
\dot{j} / \partial \eta \\
\partial \eta
\end{array}\right) \text { to compute } \\
& \text { B-matrix }
\end{aligned}
$$

(iii) $\operatorname{det} J^{e}=2 L(L+\eta(4 d-2 L))$

$$
\begin{aligned}
d=\frac{L}{4} \Rightarrow & \operatorname{det} J^{e}=1-\eta \\
& \text { for } \eta=1
\end{aligned}
$$

$\operatorname{det} J^{e}=0!!$ Jacobian is singular

Question 2

a.

$$
\int w \frac{\mathrm{~d}^{4} u}{\mathrm{~d} x^{4}} \mathrm{~d} x=\int w f \mathrm{~d} x
$$

Integrate by parts once,

$$
-\int \frac{\mathrm{d} w}{\mathrm{~d} x} \frac{\mathrm{~d}^{3} u}{\mathrm{~d} x^{3}} \mathrm{~d} x+\left[w \frac{\mathrm{~d}^{3} u}{\mathrm{~d} x^{3}}\right]=\int w f \mathrm{~d} x
$$

Integrate by parts a second time

$$
\int \frac{\mathrm{d}^{2} w}{\mathrm{~d}^{2} x} \frac{\mathrm{~d}^{2} u}{\mathrm{~d} x^{2}} \mathrm{~d} x-\left[\frac{\mathrm{d} w}{\mathrm{~d} x} \frac{\mathrm{~d}^{2} u}{\mathrm{~d} x^{2}}\right]+\left[w \frac{\mathrm{~d}^{3} u}{\mathrm{~d} x^{3}}\right]=\int w f \mathrm{~d} x
$$

At boundary, $u=0$ and so $w=0$, and $\frac{\mathrm{d}^{2} u}{\mathrm{~d}^{2} x}=0$.
As a result

$$
\int \frac{\mathrm{d}^{2} w}{\mathrm{~d}^{2} x} \frac{\mathrm{~d}^{2} u}{\mathrm{~d} x^{2}} \mathrm{~d} x=\int w f \mathrm{~d} x
$$

b.

Hermite $\rightarrow C^{1}$-continuous
c.

Lowest order per node: 2 dofs
4 unknowns (2 nodes) \rightarrow cubic shape functions
Integrands:

- Left-hand side: the integrand is a product of linear shape functions \rightarrow quadratic

Use 2 Gauss points \rightarrow integrate exactly

- Right-hand side: the integrand is cubic $\rightarrow 2$ Gauss points as well
d.

$$
\left\|u-u_{h}\right\|_{k} \leq c h^{p+1-k}\|u\|
$$

$p=3$ (cubic), $k=1 \rightarrow h^{3}$
Halve the element size \rightarrow error reduced by $(1 / 2)^{3}=1 / 8$
e.

Two coupled equations:

$$
\begin{gather*}
-\frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}=f \tag{1}\\
\frac{\mathrm{~d}^{2} u}{\mathrm{~d} x^{2}}+v=0 \tag{2}
\end{gather*}
$$

Week forms (ignoring boundaries)

$$
\begin{align*}
& \int \frac{\mathrm{d} w}{\mathrm{~d} x} \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=\int w f \mathrm{~d} x \tag{1}\\
& -\int \frac{\mathrm{d} q}{\mathrm{~d} x} \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x+\int q v \mathrm{~d} x=0 \tag{2}
\end{align*}
$$

The second term in the left-hand side of equation (2) corresponds to the standard mass matrix \mathbf{M},

$$
\mathbf{M}=\left(\begin{array}{cc}
l / 3 & l / 6 \\
l / 6 & l / 3
\end{array}\right)
$$

The system writes in matrix form

$$
\left(\begin{array}{cc}
\mathbf{K} & \mathbf{0} \\
\mathbf{M} & -\mathbf{K}
\end{array}\right)\binom{\underline{v}}{\underline{u}}=\binom{\underline{f}}{\underline{0}}
$$

where \mathbf{K} is the standard stiffness matrix,

$$
\mathbf{K}=\left(\begin{array}{cc}
1 / l & -1 / l \\
-1 / l & 1 / l
\end{array}\right)
$$

Splitting the equation in this case opens the possibility of using simple Lagrange shape functions.

Qu 3)
a) Shape functions must be compatible across element boundaries, This is only possible when ansatz is linear for 3 nodes.
b.)
1)

$$
\begin{aligned}
& N_{1}=1-\frac{x}{2}-\frac{y}{2} \\
& N_{2}=\frac{x}{2} \\
& N_{3}=\frac{y}{2} \\
& f=5 \int N d \Omega \Rightarrow f^{1}=\frac{2 \cdot A_{e}}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\frac{4}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
\end{aligned}
$$

in

$$
\binom{\frac{\partial T}{\partial x}}{\frac{\partial T}{\partial y}}=\left(\begin{array}{lll}
\frac{\partial N_{1}}{\partial x} & \frac{\partial N_{z}}{\partial x} & \frac{\partial N_{3}}{\partial x} \\
\frac{\partial N_{1}}{\partial y} & \frac{\partial N_{2}}{\partial y} & \frac{\partial N_{3}}{\partial y}
\end{array}\right)\left(\begin{array}{l}
T_{1} \\
T_{2} \\
T_{3}
\end{array}\right)
$$

$$
\frac{\partial N_{1}}{\partial x}=-\frac{1}{2} \quad \frac{\partial N_{1}}{\partial y}=-\frac{1}{2}
$$

$$
\frac{\partial N_{2}}{\partial x}=\frac{1}{2} \quad \frac{\partial N_{2}}{\partial y}=0
$$

$$
\frac{\partial N_{3}}{\partial x}=0 \quad \frac{\partial N_{3}}{\partial y}=\frac{1}{2}
$$

$$
K=A \times 3 \cdot\left(\begin{array}{cc}
-\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right)\left(\begin{array}{ccc}
-\frac{1}{2} & \frac{1}{2} & 0 \\
-\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right)=\left(\begin{array}{ccc}
3 & -\frac{3}{2} & -\frac{3}{2} \\
-\frac{3}{2} & \frac{3}{2} & 0 \\
-\frac{3}{2} & 0 & \frac{3}{2}
\end{array}\right)
$$

(ii) For the centre node

$$
8 \cdot \frac{3}{2} T=8 \cdot \frac{4}{3} \Rightarrow T=\frac{8}{9}
$$

Qu
a) Count the number of 'connections' for a node surrounded by cells, play I for the node itself:

9 nods in each lays
$\Rightarrow 9 \times 3=27$ conncutal nodes
For elasticity the an 3 dobs per node $\Rightarrow 27 \times 3=81$ norzzeros per matrix row Same for case A and $\operatorname{cose} B$
b) Double number of clements \Rightarrow doubs assembly tine Number of cell) $m=\left(n_{0}-1\right)^{3}$, when Zirution number of nodes $v=10$ ices in eck
For large no

$$
m \cong n_{0}^{3}=n \text {, when number of nodes }
$$

memory cost $\alpha n \Rightarrow \frac{\text { memory cost doubly }}{\text { when doubling \# cells }}$
c) Number of def is proportional to the $L u: O\left(n^{2}\right) \rightarrow O\left((2 n)^{2}\right)=40\left(n^{2}\right) \therefore$ cost increch fecter Ma: on $\rightarrow O(2 n):$ cost inced fatter $2 \rightarrow 4$
d) $c=\left(\int_{\tau}\left(\varepsilon_{i j}-\varepsilon_{i j}^{h}\right)\left(\varepsilon_{i j}-\varepsilon_{i j}^{h}\right) d \Omega\right)^{\frac{1}{2}}$
when $\varepsilon_{i j}=\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) / 2 \quad(\underline{u}$ exod sch

$$
\varepsilon_{i j}^{h}=\left(\frac{J u_{i}^{L_{i}}}{\partial x_{j}}+\frac{J x_{j}^{h_{j}}}{\partial x_{i}}\right) / 2 \underline{u^{L}}: F E \operatorname{sdn}
$$

e) Measun of cell size (length) $h \alpha \frac{1}{n_{0}}$ When n_{0} is number of cell in each dir.

$$
\begin{aligned}
& n_{0}=\sqrt[3]{n}=\sqrt[3]{m} \\
& \text { \#nolh } \\
& 4 \\
& \text { Hall) } \\
& n_{0}^{(A)}=\sqrt[3]{m} \quad(\text { mosh } A) \\
& n_{0}^{(B)}=\sqrt[3]{2 m}=\sqrt[3]{2} \sqrt{m} \\
& h^{(A)}=m^{-\frac{1}{3}} \\
& h^{(D)}=2^{-\frac{1}{3} m^{-1 / 3}}
\end{aligned}
$$

Order of accuracy $O(h) \Rightarrow$ erred rede

$$
2^{\frac{1}{3}} \approx 1-2 \gamma
$$

Q1: This was a popular question. In question (a)i, there was some confusion with thermal conductivity problems, and several students struggled with quickly formulating the expression of the stiffness matrix restricted to one node only. Question (a)ii was the less successful question: most student forgot to include the effect of gravity in the external force vector and struggled with the integration of the boundary force (numerical errors). Also, the definition of the force vector's dimension was rarely clear (should be either 6 (for the whole element) or 2 (only for node 3)).

Part (b) was in general more successful, almost all students expressed the isoparametric mapping correctly. The definition of the Jacobian was in general correct, but most students were not comprehensive when explaining how it is involved in the calculation of the stiffness matrix (change of variable in the integral + in the calculation of derivatives in matrix B).

Q3: This was the most popular question. Most students did well. The most difficult part was to clearly explain the reason why the shape function proposed in (a) is not suitable. Question (b)iii was generally well answered, with few students getting confused with the assembly process: they did not see the simplification and got lost in tedious calculations.

Q2: The first parts of the question (a to c) were generally well answered by the students, with sometimes confusion about the polynomial order of Hermitian shape functions (although these functions were given in the databook). In the calculation of error reduction factor, students often missed the fact that the question was about the error in the displacement derivative, not the displacement.

All students struggled with the last part of the question (e), most of them correctly split the problem (and could explain why this was appealing), but none succeeded in calculating the element matrix for the split problem

Q4: This was the least popular question, although the students who picked that question did well overall. There were some confusions between memory and time increase in (b) and the semi-norm definition in question (d) was often incorrect. In part (a), most students forgot that each node has 3 degrees of freedom.

