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1 Consider the one-dimensional differential equation for hydrogen diffusion through

dec 0 dc
Ty (Da_) ’

where c(x,t) is the concentration of hydrogen at position x and time ¢ and D is the diffusion

a solid

coefficient.

(a) Derive the weak form of the above equation for a domain spanning 0 < x <L
with a Dirichlet boundary condition ¢ = ¢ at x = 0 and a Neumann boundary condition
jo=—D3¢ at x = L for all time 1. [20%]

(b) The diffusion of hydrogen is affected by the known stress ¢ in the domain and the
stress modified diffusion equation reads

dc 0 dc -0 Jdo
% ox <D£> " (z) !

(i) Write the weak form for this modified diffusion equation with boundary

where D is a constant.

conditions as in part (a). [20%]

(i1)) The semi-discrete global finite element problem for this modified diffusion

equation can be expressed as
Mu-+Ku=f,

where u is the vector of the nodal hydrogen concentrations. For a linear element of
length & calculate the elemental contributions to M, K and f in terms of the given
nodal stress values (07,07). You may assume that the diffusion coefficient D is a
constant. [40%]

(iii)) Qualitatively discuss a solution strategy for the semi-discrete global finite
element problem in part (ii) when the diffusion coefficient D is a function of the
concentration c. [20%]
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2 (a) Figure 1(a) shows a finite element mesh consisting of one single three-noded
triangular element. The element represents a planar elastic sheet with Young’s modulus
E =200 and Poisson’s ratio v = 0 under plane stress condition. In the following consider
only the unconstrained degrees of freedom.

(i) Determine the shape functions of the element. [10%]
(ii) Determine the strain-displacement matrix B€. [20%]
(iii) Determine the stiffness matrix. [30%]

(b) Figure 1(b) shows a finite element mesh consisting of two three-noded triangular
elements. The mesh discretises a planar elastic sheet with the same material parameters
as in part (a) and is loaded as shown in Fig. 1(b) with a force fx applied to the node
connected to the inclined roller support.

(i) Determine the global stiffness matrix of the two elements. [10%]

(i) Determine the displacement of the node connected to the roller support. [30%]

1 2.0

2.0

Fig. 1(a) Fig. 1(b)
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3 (a) Figure 2(a) shows the finite element mesh for a plate with a hole under axial
tension of which only a quarter is discretised. Comment on the suitability of the shown
mesh for finite element computations. Propose an alternative discretisation by sketching
a finite element mesh. [10%]

(b) Figure 2(b) shows a four-noded isoparametric element.

(i) Compute the Jacobian matrix of the element. [35%]

(ii) The displacement vector of the element is given by

T
ae = ["‘xl Uyl Ux2 Uy Ux3 Uy3 Uxq ”y4]

T
:{0000000.10.2}.

Compute the strain components & and &y. [30%]

(c) Figure 2(c) shows a tetrahedral element with four nodes. Write down the equation
system for determining the corresponding shape functions. [25%]
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Fig. 2(c)
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4 (a) The finite element matrix form of an elastodynamic problem reads
Ma+Ka=f.

Using the integration scheme
an = apr1 —ap—1
2At
formulate a discrete problem to solve for a,, 1. [30%]

(b) Briefly discuss stability issues while using the time-integration scheme described in
part (a). [20%]

(c) Consider a one-dimensional linear bar element of length 4 with a constant stiffness
EA and density p. By computing the natural frequency of this element show that the
critical stable time-step for an elastodynamic problem using this element is proportional
to h/c, where c is the longitudinal elastic wave speed in the bar element. [30%]

(d) Qualitatively discuss how you would expect the time step estimate made in part (c)
to change for a cubic one-dimensional element also of length A. [20%]

END OF PAPER
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Element relationships

Elasticity
Displacement

Strain

Stress (2D/3D)

Element stiffness matrix
Element force vector
(body force only)

Heat conduction
Temperature

Temperature gradient
Heat flux

3D7 DATA SHEET

u=Na,
£:Bae
o6 =De

k.= Jy,BTDBdV
fe= fVeNdeV

T :Nae
VT :Bag
q=—-DVT

Element conductance matrix ke = [y, BTDBd4vV

Beam bending
Displacement

Curvature
Element stiffness matrix

Elasticity matrices

2D plane strain

2D plane stress

V= Nae
K = Ba,
k.= [y, BTEIBdV

1—v \Y
E
(I+v)(1-2v)
1 v
:L v 1
(1—v2)
0 O

Heat conductivity matrix (2D, isotropic)

D =

b




Shape functions
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N1 = ((x2y3 —x3y2) + (y2 —y3) x+ (23 —x2) y) /2A
Ny = ((x3y1 —x133) + (y3 —y1)x+ (x1 —x3)y) /2A
N3 =((x1y2 —xy1) + (y1 —y2)x+ (2 —x1) y) /2A

A = area of triangle

Ni=1-8-1
Ny=¢&
N3=n

N =2(1-E—-0)?-(1-&~71)
Ny =2£%-¢

N3 =2n*—-n
Ny=4§(1-5—n)
Ns=4n¢

Ng=4n(1-&—n)

Ny=(1-¢)(1—-n)/4
Ny=(1+¢)(1—n)/4
N3 =(1+8)(1+n)/4
Ny=(1-8)(1+n)/4
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Gauss integration in one dimension on the domain (—1, 1)
Using n Gauss integration points, a polynomial of degree 2n — 1 is integrated exactly.

number of points n  location §; weight w;
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