In the revised examination paper the marks for Question 3 have been slightly altered.

F. Cirak

in the revised examination paper the marks for Question 3 have been slightly altered.

Annal 19 5

EGT2

ENGINEERING TRIPOS PART IIA

Monday 5 May 2014 2 to 3.30

Module 3D7

FINITE ELEMENT METHODS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated in the right margin.

Write your candidate number <u>not</u> your name on the cover sheet.

STATIONERY REQUIREMENTS

Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM

CUED approved calculator allowed

Attachment: 3D7 Data Sheet (3 pages)

Engineering Data Book

You may not start to read the questions printed on the subsequent pages of this question paper until instructed to do so.

1 Consider the one-dimensional differential equation for hydrogen diffusion through a solid

$$\frac{\partial c}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial c}{\partial x} \right) \,,$$

where c(x,t) is the concentration of hydrogen at position x and time t and D is the diffusion coefficient.

- (a) Derive the weak form of the above equation for a domain spanning $0 \le x \le L$ with a Dirichlet boundary condition $c = c_0$ at x = 0 and a Neumann boundary condition $j_0 = -D\frac{\partial c}{\partial x}$ at x = L for all time t. [20%]
- (b) The diffusion of hydrogen is affected by the known stress σ in the domain and the stress modified diffusion equation reads

$$\frac{\partial c}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial c}{\partial x} \right) - \overline{D} \frac{\partial}{\partial x} \left(c \frac{\partial \sigma}{\partial x} \right) ,$$

where \overline{D} is a constant.

- (i) Write the weak form for this modified diffusion equation with boundary conditions as in part (a). [20%]
- (ii) The semi-discrete global finite element problem for this modified diffusion equation can be expressed as

$$M\dot{u} + Ku = f$$

where \boldsymbol{u} is the vector of the nodal hydrogen concentrations. For a linear element of length h calculate the elemental contributions to \boldsymbol{M} , \boldsymbol{K} and \boldsymbol{f} in terms of the given nodal stress values (σ_1, σ_2) . You may assume that the diffusion coefficient D is a constant.

(iii) Qualitatively discuss a solution strategy for the semi-discrete global finite element problem in part (ii) when the diffusion coefficient D is a function of the concentration c. [20%]

2 (a) Figure 1(a) shows a finite element mesh consisting of one single three-noded triangular element. The element represents a planar elastic sheet with Young's modulus E = 200 and Poisson's ratio v = 0 under plane stress condition. In the following consider only the unconstrained degrees of freedom.

(i)	Determine the shape functions of the element.	[10%]
(ii)	Determine the strain-displacement matrix \mathbf{B}^e .	[20%]

(iii) Determine the stiffness matrix. [30%]

(b) Figure 1(b) shows a finite element mesh consisting of two three-noded triangular elements. The mesh discretises a planar elastic sheet with the same material parameters as in part (a) and is loaded as shown in Fig. 1(b) with a force f_x applied to the node connected to the inclined roller support.

- (i) Determine the global stiffness matrix of the two elements. [10%]
- (ii) Determine the displacement of the node connected to the roller support. [30%]

- 3 (a) Figure 2(a) shows the finite element mesh for a plate with a hole under axial tension of which only a quarter is discretised. Comment on the suitability of the shown mesh for finite element computations. Propose an alternative discretisation by sketching a finite element mesh. [10%]
- (b) Figure 2(b) shows a four-noded isoparametric element.
 - (i) Compute the Jacobian matrix of the element. [35%]
 - (ii) The displacement vector of the element is given by

$$\mathbf{a}_{e} = \begin{bmatrix} u_{x1} & u_{y1} & u_{x2} & u_{y2} & u_{x3} & u_{y3} & u_{x4} & u_{y4} \end{bmatrix}^{T}$$

$$= \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0.1 & 0.2 \end{bmatrix}^{T}.$$

Compute the strain components ε_{xx} and ε_{yy} .

[30%]

(c) Figure 2(c) shows a tetrahedral element with four nodes. Write down the equation system for determining the corresponding shape functions. [25%]

Fig. 2(c)

4 (a) The finite element matrix form of an elastodynamic problem reads

$$M\ddot{a} + Ka = f$$
.

Using the integration scheme

$$\dot{\boldsymbol{a}}_n = \frac{\boldsymbol{a}_{n+1} - \boldsymbol{a}_{n-1}}{2\Delta t}$$

formulate a discrete problem to solve for a_{n+1} .

[30%]

- (b) Briefly discuss stability issues while using the time-integration scheme described in part (a). [20%]
- (c) Consider a one-dimensional linear bar element of length h with a constant stiffness EA and density ρ . By computing the natural frequency of this element show that the critical stable time-step for an elastodynamic problem using this element is proportional to h/c, where c is the longitudinal elastic wave speed in the bar element. [30%]
- (d) Qualitatively discuss how you would expect the time step estimate made in part (c) to change for a cubic one-dimensional element also of length *h*. [20%]

END OF PAPER

THE HE ALL OF THE

antiquelinist beneally

9 (feb. 11)

ii harriyagh, si

ch r & over

\$45 = 16 (F. Fig. 2 and)

Paragraphic strains are still a manual to

Life agent for some of a gallery flow

Antonio de Macelli

noinadens a past

9 1875, 3119 1

S = 17 Restorate January

vall to sel

the state of the state of the

The rest consideration and $z=k_{\rm pol}+z$ for the second section Z^T and

alika - I man mmuninye 198

8 - J - 38 45 - 3- 0

- An 電子に 製 pro - - - An - Arhabe a committed in committee

and the gradual is

source or do off.

arights each of a factor

Trienged All rations with with a city of

3D7 DATA SHEET

Element relationships

Elasticity

Displacement

 $u = Na_e$

Strain

 $\boldsymbol{\varepsilon} = \boldsymbol{B}\boldsymbol{a}_{\scriptscriptstyle P}$

Stress (2D/3D)

 $\sigma = D\varepsilon$

Element stiffness matrix $\mathbf{k}_e = \int_{V_e} \mathbf{B}^T \mathbf{D} \mathbf{B} \, dV$

Element force vector

 $\boldsymbol{f}_e = \int_{V_e} \boldsymbol{N}^T \boldsymbol{f} \, dV$

(body force only)

Heat conduction

Temperature

 $T = Na_e$

Temperature gradient

 $\nabla T = \mathbf{B}\mathbf{a}_{e}$

Heat flux

 $q = -D\nabla T$

Element conductance matrix

 $\mathbf{k}_e = \int_{V_{\rho}} \mathbf{B}^T \mathbf{D} \mathbf{B} \, dV$

Beam bending

Displacement

 $v = Na_e$

Curvature

 $\kappa = Ba_e$

Element stiffness matrix $\mathbf{k}_e = \int_{V_e} \mathbf{B}^T E I \mathbf{B} dV$

Elasticity matrices

2D plane strain

$$\mathbf{D} = \frac{E}{(1+v)(1-2v)} \begin{bmatrix} 1-v & v & 0\\ v & 1-v & 0\\ 0 & 0 & \frac{1-2v}{2} \end{bmatrix}$$

2D plane stress

$$\mathbf{D} = \frac{E}{(1 - \mathbf{v}^2)} \begin{bmatrix} 1 & \mathbf{v} & 0 \\ \mathbf{v} & 1 & 0 \\ 0 & 0 & \frac{1 - \mathbf{v}}{2} \end{bmatrix}$$

Heat conductivity matrix (2D, isotropic)

$$\mathbf{D} = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$$

Shape functions

$$N_1 = ((x_2y_3 - x_3y_2) + (y_2 - y_3)x + (x_3 - x_2)y)/2A$$

$$N_2 = ((x_3y_1 - x_1y_3) + (y_3 - y_1)x + (x_1 - x_3)y)/2A$$

$$N_3 = ((x_1y_2 - x_2y_1) + (y_1 - y_2)x + (x_2 - x_1)y)/2A$$

$$A = \text{area of triangle}$$

$$N_1 = 1 - \xi - \eta$$

$$N_2 = \xi$$

$$N_3 = \eta$$

$$N_{1} = 2(1 - \xi - \eta)^{2} - (1 - \xi - \eta)$$

$$N_{2} = 2\xi^{2} - \xi$$

$$N_{3} = 2\eta^{2} - \eta$$

$$N_{4} = 4\xi(1 - \xi - \eta)$$

$$N_{5} = 4\eta\xi$$

$$N_{6} = 4\eta(1 - \xi - \eta)$$

$$N_1 = (1 - \xi)(1 - \eta)/4$$

$$N_2 = (1 + \xi)(1 - \eta)/4$$

$$N_3 = (1 + \xi)(1 + \eta)/4$$

$$N_4 = (1 - \xi)(1 + \eta)/4$$

Hermitian element

$$N_{1} = \frac{-(x-x_{2})^{2}(-l+2(x_{1}-x))}{l^{3}}$$

$$M_{1} = \frac{(x-x_{1})(x-x_{2})^{2}}{l^{2}}$$

$$N_{2} = \frac{(x-x_{1})^{2}(l+2(x_{2}-x))}{l^{3}}$$

$$M_{2} = \frac{(x-x_{1})^{2}(x-x_{2})}{l^{2}}$$

Gauss integration in one dimension on the domain (-1,1)

Using n Gauss integration points, a polynomial of degree 2n-1 is integrated exactly.

number of points n	location ξ_i	weight w_i
1	0	2
2	$-\frac{1}{\sqrt{3}}$	1
	$\frac{1}{\sqrt{3}}$	1
3	$-\sqrt{\frac{3}{5}}$	$\frac{5}{9}$
	0	$\frac{8}{9}$
	$\sqrt{\frac{3}{5}}$	$\frac{5}{9}$