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Question 2.

(ai) By backward difference, computing P(s) for s = 23! gives

P(z—1)=i= T T o_ 1

2T =1 i1 1-z7 1-z1°

Because of the sampling period T = 1, the delay can be represented directly with

the delay operator z=7, which results into the expression % for G(z).

(a.ii) Method 1: G(z) has a pole in 1 therefore is an infinite impulse response filter (finite
impulse response filters have all poles in zero). Numerator and denuinerator have
the same degree, therefore the filter is causal.

Method 2: the difference equation of the filter reads y(k) —y(k—1) = u(k—7). The
filter is thus IIR since it is recursive. The actual value of the filter y(k) does not
depend on future values of the input u(k + n), n > 0, therefore the filter is causal.

(b.i) For T =0,

1 1 1 _ 1
—e30 1-ef 2. #_¢eif  2—2cos(0)

IG(#)* = Ge)G(e)* = -

For 0 <8 < m, |G(e?®)) = ‘/m goes to infinity for 8 — 0. |G(e?®)| monoton-
ically decreases as f increases, reaching its minimum at |G(7)| = % Finally, recall
that G(z) is the discretization of an integrator, therefore it is expected a decay of
—20 dB/dec at low frequencies. The magnitude plot does nat change for r > 0.
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(b.ii) The step responses is unbounded since the magnitude of the Bode diagram goes to
infinity when the frequency approaches 0.

Equivalently, in the z-domain the response of the filter to the step input U(z) =
%1— reads

-T -1
Y(@) =6 = g =7 (1 = Z_l,z)

1



whose antitrasform reads

y(k)={l+k_1- k>t

0 otherwise.

{b.iii) 20dB corresponds to an amplification factor of 10. We look for & at which |G{e?®)] =
10, that is, [G(e?)[2 = m = 100. Thus, & = arccos(1 — 1/200) ~ 0.1.

{c.i} Plot A corresponds to v = 0.

For = 0 the transfer function reads G(z) = %;. Thus, G{e'") = G(-1) ==} =
0.5, which excludes C and D. Because of the pole in —1, the transfer function goes
to infinity near 0% with —x/2 phase, but numerator and denominator have the same
degree, which exclude the phase variation of B.

Equivalently, by explicit computation the real part of G(e??) is fixed at § since

Jsin(d)
2(1 - cos()’

oI® eif(e~30 - 1) 1-¢e®  1-cos(f) - jsin(d) _

e -1 (ef—1)0(e®—1) 2-2cos(d) 21— cos(d)

1
2

Plot C corresponds to 7 = 3.

For v = 3 the transfer function reads G(z) = ?T:l—_l) Thus, G(e’™) = G(-1) =
~0.5, which excludes A and B. The two poles in zero gives a phase contribution of
2r for # moving from 0% to 7. This excludes D.

The complete Nyquist diagrams are provided below The dotted semicircle represents
the closure at infinity.
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(c.ii) For 7 = 3, closed loop stability holds for K < .l_l.ﬁ. The open loap has no unsta-
ble poles therefore, by Nyquist criterion, we search the gain K that guarantees 0
encirclements of the point —1/K. For positive K, 0 encirclements are achieved if

-1/K<-16 = 1/K>16 = K< %3 .

For r =0, any positive gain K guarantees closed loop stability.



Question 3.

{n.i) Taking into account the frequency warping of the bilinear transform, we set The
normalized cutoff frequencies are given by

wy = tan(0.257/2) ~ 0.4142  w, = tan(0.757/2) =~ 2.4142 .

Thus wywy, = 1 and wy — wy = 2 From the analog prototype H(s) = l, using the

lowpass to bandpass analogue transform s — £ wthiz; = —;— we get

28

H'(s) = 50— .
(s) 5242941

Using the bilinear transform we finally get

G(z) = H'(s}],_ez1

{a.ii) The impulse response is obtained by antitransform

i 1 f e 0.75%
he = (eﬂ’) ndg = ( f g 4 / eJ""de)
[H

2 2r -0.757 257
1 218k -0.257 ngL 0.75m

I ([ }-0757 [ ]DQSH’)
1 [e—J025mk  —j0TSxk  oj0.TSmk  ,j0.25wk

2 ( ik gk ik ik )

= -n-l_A (5in (0.757k) — sin (0.257k)) .

At k = 0 we take the limit value hg = 0.5.

The use of a rectangular window of 11 samples gives

B = hy ~5<k<5
k7Y o0 otherwise

The impulse response g of the filter and its transfer function G(z) read

10
gt = hj_g G{z) = Z hy_s2k
k=0

A wider window would reduce the transition band of the filter. Sharp discontinuity
of the rectangular window results in side-lohe interference independent of the filter's
order.

(b.i} Let g be the impulse response of the filter and let z), be the input to the filter.

For a FIR flter of 11 samples and a 100-point DFT hardware, define M = 10 and
N = 100. Standard convolution read

Y = Zywm-a = ngxm—k

k=0



Circular convolution read
N-1
Um = Z Gk mod({m~k,N)
k=0

where mod(m — k, N) denotes m ~ & in modulo N arithmetic. The two convolutions
campute the same output for M € m < n.

(b.ii) FFT hardware can be used to compute the output of the filter, by taking advantage
of the relation between circular and standard convolution.

In what follows we use vector notation for simplicity and we denote by FFT and
IFFT respectively the fast Fourier transform and the inverse fast Fourier transform
operations. We also use A =10 and N = 100

— Processing via FFT hardware an input ;. of 200 samples requires frames

xr = |0,...,0,IQ,...,I39}

M
zy = |%soy. .., Tr70)
Tt [170, ..., %200,0,...,0]

— Given the impulse response of the filter in vector notation
g=lg0,...,050,...,0]
compute the FFT of the filter G = FFT(g) and of each frame
X1 =FF¥(z;), X11 =FFT(z11), X111 = FFT(z444).
— Build the output frames by products
Yi=CXy, Yu=CGXy, Y =GXy.

(standard product between vectors, G row vector, X; column vecter).

— Compute the inverse FFT
yr = iFFT(Y;), Yy, = iFFT(Y;1), Yy = iFFT(Y L),

— The output response of the flter is thus given by the last N — A samples of
¥1: ¥1; and gy combined together.

{b.ii) The discrete Fourier transform applied to the impulse response of the filter read

N-1
§m:=nge"jﬁ'mk 0smsN-1.
k=0

Thus,
N-1
Fo = Z 9k
k=0

where g;. is given in part (a.ii).
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