Crib of 3F1 exam 2022

- (a) H₁(z) has a zero at -1 and a pole at 0.8. Since H(1) = 1 and H(-1) = 0, its amplitude plot should start at 0dB and end at -∞ dB, which excludes Bode diagram (A). Its phase starts at 0 and should remain monotonically decreasing to -pi/2, excluding (C) where the phase clearly goes slightly positive. Hence, Bode diagram (B) corresponds to H₁(z). Following the same logic, Nyquist diagram (3) is the only diagram whose phase never goes into the positive range.
 - $H_2(z)$ is an FIR filter with two zeros at $0.9e^{\pm j\pi/4}$ and two poles at the origin. Its amplitude reponse should experience a noted dip when it passes close to the zero at $\theta = \pi/4$, which is only the case for Bode diagram (A). Its phase diagram briefly exceeds $\pi/2$ around $\theta = 1$, which is only the case for Nyquist diagram (1).
 - By exclusion, $H_3(z)$ must correspond to Bode diagram (C) and Nyquist diagram (2). It is also clear that the phase and amplitude diagrams mirror that of the FIR filter $H_2(z)$ (save a bias due to a different multiplicative constant up front.)
 - (b) For $H_1(z)$,

For $H_2(z)$,

[30%]

For $H_3(z)$,

- (c) All three systems are stable and hence have no unstable poles. The closed loop system is stable if there are no encirclements of the point -1/K. Hence
 - For $H_1(z)$, the system is stable for K > 0 and for K < -1.
 - For $H_2(z)$, the system is stable approximately for $K < \frac{-1}{0.06} = -16.7$ and for K > -1. The exact answer is $H(e^{j\theta}) = 0.616$ for $\theta = \cos^{-1}(\sqrt{2}/1.8)$, i.e., K < -16.2243 but you were not expected to compute this.
 - For $H_3(z)$, the system is stable approximately for $K < \frac{-1}{0.18} = -5.6$ and for $K > \frac{-1}{2.82} = -0.35$. Again, the exact answers are $H_3(e^{j\pi}) = H_3(-1) = 0.1743$, i.e., K < -5.7386, and $H_3(e^{j\theta}) = 2.8274$ for $\theta = \cos^{-1}(\sqrt{2}/1.8)$, i.e., K > -0.3537, but you were not expected to compute this.
- (d) Reading from the Bode diagram, a unit step being a sinusoidal of zero frequency $u_k = \cos 0k$, the steady-state response will be a unit step of the same amplitude because $|H_1(e^{j0})| = |H_1(1)| = 1$. The steady step response to $v_k = (-1)^k = \cos \pi k$ is the all zero sequence because the gain of the system is zero at frequency π , i.e., $|H_1(e^{j\pi})| = |H_1(-1)| = 0$.
- (e) We can invert the bilinear transformation to yield $z = \frac{a+s}{a-s}$ and insert this expression into $H_1(z)$ to obtain

$$\tilde{H}_1(s) = 0.1 \frac{\frac{a+s}{a-s} + 1}{\frac{a+s}{a-s} - 0.8} = 0.1 \frac{a+s+a-s}{a+s-0.8a+0.8s} = \frac{1}{1+9a^{-1}s}$$

This shows that the analog filter was of the form

$$H_1(s) = \frac{1}{1 + s/\omega_c}$$

a first-order lowpass where $\omega_c = a/9$ is the 3dB cutoff frequency since $10 \log_{10}(|H_1(j\omega_c)|^2) = 10 \log_{10}(1/2) \approx -3$. The discrete-time filter's 3dB cutoff frequency is obtained by solving

$$\left| 0.1 \frac{e^{j\theta} + 1}{e^{j\theta} - 0.8} \right|^2 = 1/2$$

[20%]

[10%]

[15%]

which, after some manipulation, yields $\theta = \cos^{-1}(40/41) = 0.2213$ rad. (An approximate value of $\theta = 0.2$ obtained from the Bode plot is also satisfactory.) With a sampling period of T = 1 ms the 3dB frequency should be $\omega_c = 221.3$ rad/sec which gives

$$H_1(s) = \frac{1}{1 + \frac{s}{221.3}}$$

and a = 1992.

[25%]

2. (a) From the data book:

$$h_k = \frac{1}{N} \sum_{n=0}^{N-1} H_n e^{j2\pi nk/N}$$
$$= \frac{\alpha}{N} e^{j2\pi \ell k/N}$$

for $0 \le k \le N - 1$. But this expression is periodic with period N. Hence it is valid for all $k \ge 0$. Taking z-transforms gives:

$$H(z) = \sum_{k=0}^{\infty} h_k z^{-k}$$

= $\frac{\alpha}{N} \sum_{k=0}^{\infty} e^{j\frac{2\pi\ell k}{N}} z^{-k}$
= $\frac{\alpha/N}{1 - e^{j2\pi\ell/N} z^{-1}}.$

(b) This follows from the previous result by superposition due to the linearity of the DFT: a vector (H_0, \ldots, H_{N-1}) with d non-zero terms can be written as a sum of d vectors with one non-zero term, and hence the z transform H(z) is a sum of d terms of the form

$$\frac{H_{\ell}/N}{1 - e^{j2\pi\ell/N}z^{-1}}$$

for every non-zero term H_{ℓ} , which is a proper partial fraction expansion of a rational function with d distinct poles.

(c) We can either take the inverse DFT to obtain a period of the sequence in the time domain and take its z transform, or use the expressions and arguments in the previous two questions to write out the z transform directly as

$$\begin{split} H(z) &= \frac{1}{6} \left(\frac{-1}{1 - z^{-1}} + \frac{1}{1 - e^{-j\pi/3}z^{-1}} + \frac{1}{1 - e^{-j\pi/3}z^{-1}} \right) \\ &= \frac{-(1 - 2z^{-1}\cos\frac{\pi}{3} + z^{-2}) + (1 - z^{-1})(2 - 2z^{-1}\cos\frac{\pi}{3})}{6(1 - z^{-1})(1 - e^{-j\pi/3}z^{-1})(1 - e^{j\pi/3}z^{-1})} \\ &= \frac{1 - 2z^{-1}}{6(1 - z^{-1})(1 - e^{-j\pi/3}z^{-1})(1 - e^{j\pi/3}z^{-1})} \end{split}$$

and the pole-zero diagram is hence

[25%]

[10%]

(d) The amplitude plot has value 1/6, or, equivalently, -15.56 dB for $\theta = 0$ or π and tends to infinity as θ approaches $\pi/3$,

- (e) A sinusoidal with frequency $\theta = \pi/3$, e.g., $x_k = \sin(k\pi/3)$ for k = 0, 1, 2, ..., will result in an unbounded output sequence because $|G(e^{j\theta})|$ tends to infinity when θ approaches $\pi/3$ and the "steady state" term of the output sequence is unbounded (bearing in mind that the other terms do not necessarily decay). [10%]
- (f) The transfer function of the open loop is $G(z) = \frac{1-2z^{-1}}{6(1-z^{-1}+z^{-2})}$ and hence the transfer function of the closed loop is

$$F(z) = \frac{KG(z)}{1 + KG(z)} = \frac{K(1 - 2z^{-1})(1 - z^{-1} + z^{-2})}{6(1 - z^{-1} + z^{-2}) + K(1 - 2z^{-1})} = \frac{K(1 - 3z^{-1} + 3z^{-2} - 2z^{-3})}{6 + K - (6 + 2K)z^{-1} + 6z^{-2}}$$

We can apply the initial value theorem

$$f_0 = \lim_{z \to \infty} F(z) = \frac{K}{6+K} = \frac{1}{1+6/K}.$$
[20%]

[15%]

3. (a) From the definition:

$$X_{N-k} = \sum_{n=0}^{N-1} x_n \exp(-j2\pi n(N-k)/N)$$
$$= \sum_{n=0}^{N-1} x_n \exp(-j2\pi n(-k)/N).$$

Hence

$$X_{N-k}^* = \sum_{n=0}^{N-1} x_n \exp(-j2\pi nk/N) = X_k$$

since x_n is real. This does not hold if x_n is not real. Also,

$$X_{k+mN} = \sum_{n=0}^{N-1} x_n \exp(-j2\pi n(k+mN)/N)$$
$$= \sum_{n=0}^{N-1} x_n \exp(-j2\pi nk/N) = X_k$$

when m is an integer. This continues to hold if x_n is complex.

- (b) Each term $x_n \exp(-j2\pi nk/N)$ requires 2 real multiplications. Thus, for eack k, 2N real multiplications are needed to evaluate X_k as well as $2(N-1) \approx 2N$ real additions to sum the real and imaginary parts separately. But, note that $X_k = X_{N-k}^*$ implies that we only need to calculate the first N/2frequency values since the rest are obtained by simple conjugation. Thus the total cost is N^2 real multiplications and N^2 real additions. For complex data we require 4 real multiplies for each $x_n \exp(-j2\pi nk/N)$. Thus, for each k, we require 4N real multiplications and 2N real additions. But this time we need all N frequency components, so overall: $4N^2$ real multiplications and $2N^2$ real additions. [25%]
- (c) By definition of x_n :

$$X_k = X_k^{(1)} + jX_k^{(2)}.$$

Hence

$$X_{N-k} = X_{N-k}^{(1)} + jX_{N-k}^{(2)}$$

= $X_k^{(1)^*} + jX_k^{(2)^*}$

by the conjugacy property from (b). So,

$$X_{N-k}^* = X_k^{(1)} - jX_k^{(2)}$$

Hence,

$$X_k^{(1)} = 0.5(X_k + X_{N-k}^*)$$

and

$$X_k^{(2)} = -0.5j(X_k - X_{N-k}^*)$$
[25%]

(d) Complexity of X_k is $4N^2$ mults. and $2N^2$ additions.

Extraction of each k is 2 real additions for each of $X_k^{(1)}$ and $X_k^{(2)}$. This is carried out N/2 times for the required N/2 coefficients of the real DFT. So in total: $4N^2$ mults. and $2N^2 + N/2 \times 2 = 2N^2 + N$ additions. Compared with evaluation of 2 real DFTs: $2N^2$ mults and $2N^2$ addns. Thus we do not benefit compared to an optimised real-valued DFT for each real sequence as in part (b). [But we would benefit if general complex DFT was being used throughout]. [20%] 4. (a) The power spectral density, $S_X(\omega)$, is given by

$$S_X(\omega) = \int_{-\infty}^{\infty} r_{XX}(\tau) e^{-j\omega\tau} d\tau = 1$$

which is constant over all ω . For the output of the linear system y(t)

$$S_Y(\omega) = |H(j\omega)|^2 S_X(\omega)$$

where $H(j\omega)$ is the Fourier transform of h(t). In case (i) $H(j\omega) = \frac{2}{1+j\omega}$. Hence $S_Y(\omega) = \frac{2}{(1+\omega^2)^{1/2}}$. In case (ii) $H(j\omega) = -1 + \frac{2}{1+j\omega} = \frac{1-j\omega}{1+j\omega}$. Hence $S_Y(\omega) = 1$ for all ω . [In this case the transfer-function of the linear system is *all-pass*]. [35%]

(b) (i) $H(z) = -1 + 2z^{-1} - z^{-2}$ which gives:

$$H(e^{j\theta}) = -1 + 2e^{-j\theta} - e^{-2j\theta}$$
$$= e^{-j\theta}(-e^{j\theta} + 2 - e^{-j\theta})$$
$$= e^{-j\theta}(-2\cos\theta + 2)$$

which gives $\alpha = 1$ and $G = 2 - 2\cos\theta$. This is a high-pass filter with a constant delay of 1 sample.

(ii) The transfer function of the filter takes the form

$$H(z) = \alpha \frac{1 - z^{-1}/p^*}{1 - z^{-1}p}$$

[25%]

for some constant α which gives

$$H(e^{j\theta}) = \alpha \frac{1 - e^{-j\theta}/p^*}{1 - e^{-j\theta}p}$$
$$= \frac{-\alpha e^{-j\theta}}{p^*} \frac{(1 - e^{-j\theta}p)^*}{1 - e^{-j\theta}p}$$

Hence

$$|H(e^{j\theta})| = \left|\frac{\alpha}{p}\right|$$

which is constant. Thus a digital all-pass function may take the form:

$$H(z) = \frac{z^{-1} - p^*}{1 - z^{-1}p}.$$

A problem for real implementation is that the filter doesn't have real coefficients. To overcome this problem it could be placed in series with a similar filter with poles and zeros at the conjugate locations:

$$H(z) = \frac{z^{-1} - p^*}{1 - z^{-1}p} \frac{z^{-1} - p}{1 - z^{-1}p^*}$$

which can be multiplied out to give a filter with real coefficients. Application in cascades of 2nd order filters for phase effects in digital audio. [40%]