Crib of 3F1 exam 2022

1. (a) - $H_{1}(z)$ has a zero at -1 and a pole at 0.8 . Since $H(1)=1$ and $H(-1)=0$, its amplitude plot should start at $0 d B$ and end at $-\infty \mathrm{dB}$, which excludes Bode diagram (A). Its phase starts at 0 and should remain monotonically decreasing to $-p i / 2$, excluding (C) where the phase clearly goes slightly positive. Hence, Bode diagram (B) corresponds to $H_{1}(z)$. Following the same logic, Nyquist diagram (3) is the only diagram whose phase never goes into the positive range.

- $H_{2}(z)$ is an FIR filter with two zeros at $0.9 e^{ \pm j \pi / 4}$ and two poles at the origin. Its amplitude reponse should experience a noted dip when it passes close to the zero at $\theta=\pi / 4$, which is only the case for Bode diagram (A). Its phase diagram briefly exceeds $\pi / 2$ around $\theta=1$, which is only the case for Nyquist diagram (1).
- By exclusion, $H_{3}(z)$ must correspond to Bode diagram (C) and Nyquist diagram (2). It is also clear that the phase and amplitude diagrams mirror that of the FIR filter $H_{2}(z)$ (save a bias due to a different mulltiplicative constant up front.)
(b) For $H_{1}(z)$,

For $H_{2}(z)$,

For $H_{3}(z)$,

(c) All three systems are stable and hence have no unstable poles. The closed loop system is stable if there are no encirclements of the point $-1 / K$. Hence

- For $H_{1}(z)$, the system is stable for $K>0$ and for $K<-1$.
- For $H_{2}(z)$, the system is stable approxmately for $K<\frac{-1}{0.06}=-16.7$ and for $K>-1$. The exact answer is $H\left(e^{j \theta}\right)=0.616$ for $\theta=\cos ^{-1}(\sqrt{2} / 1.8)$, i.e., $K<-16.2243$ but you were not expected to compute this.
- For $H_{3}(z)$, the system is stable approximately for $K<\frac{-1}{0.18}=-5.6$ and for $K>$ $\frac{-1}{2.82}=-0.35$. Again, the exact answers are $H_{3}\left(e^{j \pi}\right)=H_{3}(-1)=0.1743$, i.e., $K<-5.7386$, and $H_{3}\left(e^{j \theta}\right)=2.8274$ for $\theta=\cos ^{-1}(\sqrt{2} / 1.8)$, i.e., $K>-0.3537$, but you were not expected to compute this.
(d) Reading from the Bode diagram, a unit step being a sinusoidal of zero frequency $u_{k}=\cos 0 k$, the steady-state response will be a unit step of the same amplitude because $\left|H_{1}\left(e^{j 0}\right)\right|=\left|H_{1}(1)\right|=1$. The steady step response to $v_{k}=(-1)^{k}=\cos \pi k$ is the all zero sequence because the gain of the system is zero at frequency π, i.e., $\left|H_{1}\left(e^{j \pi}\right)\right|=\left|H_{1}(-1)\right|=0$.
(e) We can invert the bilinear transformation to yield $z=\frac{a+s}{a-s}$ and insert this expression into $H_{1}(z)$ to obtain

$$
\tilde{H}_{1}(s)=0.1 \frac{\frac{a+s}{a-s}+1}{\frac{a+s}{a-s}-0.8}=0.1 \frac{a+s+a-s}{a+s-0.8 a+0.8 s}=\frac{1}{1+9 a^{-1} s}
$$

This shows that the analog filter was of the form

$$
H_{1}(s)=\frac{1}{1+s / \omega_{c}}
$$

a first-order lowpass where $\omega_{c}=a / 9$ is the 3 dB cutoff frequency since $10 \log _{10}\left(\left|H_{1}\left(j \omega_{c}\right)\right|^{2}\right)=$ $10 \log _{10}(1 / 2) \approx-3$. The discrete-time filter's 3 dB cutoff frequency is obtained by solving

$$
\left|0.1 \frac{e^{j \theta}+1}{e^{j \theta}-0.8}\right|^{2}=1 / 2
$$

which, after some manipulation, yields $\theta=\cos ^{-1}(40 / 41)=0.2213 \mathrm{rad}$. (An approximate value of $\theta=0.2$ obtained from the Bode plot is also satisfactory.) With a sampling period of $T=1 \mathrm{~ms}$ the 3 dB frequency should be $\omega_{c}=221.3 \mathrm{rad} / \mathrm{sec}$ which gives

$$
H_{1}(s)=\frac{1}{1+\frac{s}{221.3}}
$$

and $a=1992$.
2. (a) From the data book:

$$
\begin{aligned}
h_{k} & =\frac{1}{N} \sum_{n=0}^{N-1} H_{n} e^{j 2 \pi n k / N} \\
& =\frac{\alpha}{N} e^{j 2 \pi \ell k / N}
\end{aligned}
$$

for $0 \leq k \leq N-1$. But this expression is periodic with period N. Hence it is valid for all $k \geq 0$. Taking z-transforms gives:

$$
\begin{align*}
H(z) & =\sum_{k=0}^{\infty} h_{k} z^{-k} \\
& =\frac{\alpha}{N} \sum_{k=0}^{\infty} e^{j \frac{2 \pi \ell k}{N}} z^{-k} \\
& =\frac{\alpha / N}{1-e^{j 2 \pi \ell / N} z^{-1}}
\end{align*}
$$

(b) This follows from the previous result by superposition due to the linearity of the DFT: a vector $\left(H_{0}, \ldots, H_{N-1}\right)$ with d non-zero terms can be written as a sum of d vectors with one non-zero term, and hence the z transform $H(z)$ is a sum of d terms of the form

$$
\frac{H_{\ell} / N}{1-e^{j 2 \pi \ell / N} z^{-1}}
$$

for every non-zero term H_{ℓ}, which is a proper partial fraction expansion of a rational function with d distinct poles.
(c) We can either take the inverse DFT to obtain a period of the sequence in the time domain and take its z transform, or use the expressions and arguments in the previous two questions to write out the z transform directly as

$$
\begin{aligned}
H(z) & =\frac{1}{6}\left(\frac{-1}{1-z^{-1}}+\frac{1}{1-e^{-j \pi / 3} z^{-1}}+\frac{1}{1-e^{-j \pi / 3} z^{-1}}\right) \\
& =\frac{-\left(1-2 z^{-1} \cos \frac{\pi}{3}+z^{-2}\right)+\left(1-z^{-1}\right)\left(2-2 z^{-1} \cos \frac{\pi}{3}\right)}{6\left(1-z^{-1}\right)\left(1-e^{-j \pi / 3} z^{-1}\right)\left(1-e^{j \pi / 3} z^{-1}\right)} \\
& =\frac{1-2 z^{-1}}{6\left(1-z^{-1}\right)\left(1-e^{-j \pi / 3} z^{-1}\right)\left(1-e^{j \pi / 3} z^{-1}\right)}
\end{aligned}
$$

and the pole-zero diagram is hence

(d) The amplitude plot has value $1 / 6$, or, equivalently, -15.56 dB for $\theta=0$ or π and tends to infinity as θ approaches $\pi / 3$,

(e) A sinusoidal with frequency $\theta=\pi / 3$, e.g., $x_{k}=\sin (k \pi / 3)$ for $k=0,1,2, \ldots$, will result in an unbounded output sequence because $\mid G\left(e^{j \theta} \mid\right.$ tends to infinity when θ approaches $\pi / 3$ and the "steady state" term of the output sequence is unbounded (bearing in mind that the other terms do not necessarily decay).
(f) The transfer function of the open loop is $G(z)=\frac{1-2 z^{-1}}{6\left(1-z^{-1}+z^{-2}\right)}$ and hence the transfer function of the closed loop is
$F(z)=\frac{K G(z)}{1+K G(z)}=\frac{K\left(1-2 z^{-1}\right)\left(1-z^{-1}+z^{-2}\right)}{6\left(1-z^{-1}+z^{-2}\right)+K\left(1-2 z^{-1}\right)}=\frac{K\left(1-3 z^{-1}+3 z^{-2}-2 z^{-3}\right)}{6+K-(6+2 K) z^{-1}+6 z^{-2}}$
We can apply the initial value theorem

$$
f_{0}=\lim _{z \rightarrow \infty} F(z)=\frac{K}{6+K}=\frac{1}{1+6 / K} .
$$

3. (a) From the definition:

$$
\begin{aligned}
X_{N-k} & =\sum_{n=0}^{N-1} x_{n} \exp (-j 2 \pi n(N-k) / N) \\
& =\sum_{n=0}^{N-1} x_{n} \exp (-j 2 \pi n(-k) / N)
\end{aligned}
$$

Hence

$$
X_{N-k}^{*}=\sum_{n=0}^{N-1} x_{n} \exp (-j 2 \pi n k / N)=X_{k}
$$

since x_{n} is real. This does not hold if x_{n} is not real. Also,

$$
\begin{aligned}
X_{k+m N} & =\sum_{n=0}^{N-1} x_{n} \exp (-j 2 \pi n(k+m N) / N) \\
& =\sum_{n=0}^{N-1} x_{n} \exp (-j 2 \pi n k / N)=X_{k}
\end{aligned}
$$

when m is an integer. This continues to hold if x_{n} is complex.
(b) Each term $x_{n} \exp (-j 2 \pi n k / N)$ requires 2 real multiplications.

Thus, for eack $k, 2 N$ real multiplications are needed to evaluate X_{k} as well as $2(N-1) \approx 2 N$ real additions to sum the real and imaginary parts separately.
But, note that $X_{k}=X_{N-k}^{*}$ implies that we only need to calculate the first $N / 2$ frequency values since the rest are obtained by simple conjugation.
Thus the total cost is N^{2} real multiplications and N^{2} real additions.
For complex data we require 4 real multiplies for each $x_{n} \exp (-j 2 \pi n k / N)$.
Thus, for each k, we require $4 N$ real multiplications and $2 N$ real additions.
But this time we need all N frequency components, so overall: $4 N^{2}$ real multiplications and $2 N^{2}$ real additions.
(c) By definition of x_{n} :

$$
X_{k}=X_{k}^{(1)}+j X_{k}^{(2)}
$$

Hence

$$
\begin{aligned}
X_{N-k} & =X_{N-k}^{(1)}+j X_{N-k}^{(2)} \\
& =X_{k}^{(1)^{*}}+j X_{k}^{(2)^{*}}
\end{aligned}
$$

by the conjugacy property from (b). So,

$$
X_{N-k}^{*}=X_{k}^{(1)}-j X_{k}^{(2)}
$$

Hence,

$$
X_{k}^{(1)}=0.5\left(X_{k}+X_{N-k}^{*}\right)
$$

and

$$
X_{k}^{(2)}=-0.5 j\left(X_{k}-X_{N-k}^{*}\right)
$$

(d) Complexity of X_{k} is $4 N^{2}$ mults. and $2 N^{2}$ additions.

Extraction of each k is 2 real additions for each of $X_{k}^{(1)}$ and $X_{k}^{(2)}$. This is carried out $N / 2$ times for the required $N / 2$ coefficients of the real DFT. So in total: $4 N^{2}$ mults. and $2 N^{2}+N / 2 \times 2=2 N^{2}+N$ additions.
Compared with evaluation of 2 real DFTs: $2 N^{2}$ mults and $2 N^{2}$ addns. Thus we do not benefit compared to an optimised real-valued DFT for each real sequence as in part (b). [But we would benefit if general complex DFT was being used throughout].
4. (a) The power spectral density, $S_{X}(\omega)$, is given by

$$
S_{X}(\omega)=\int_{-\infty}^{\infty} r_{X X}(\tau) e^{-j \omega \tau} d \tau=1
$$

which is constant over all ω. For the output of the linear system $y(t)$

$$
S_{Y}(\omega)=|H(j \omega)|^{2} S_{X}(\omega)
$$

where $H(j \omega)$ is the Fourier transform of $h(t)$.
In case (i) $H(j \omega)=\frac{2}{1+j \omega}$. Hence $S_{Y}(\omega)=\frac{2}{\left(1+\omega^{2}\right)^{1 / 2}}$.
In case (ii) $H(j \omega)=-1+\frac{2}{1+j \omega}=\frac{1-j \omega}{1+j \omega}$. Hence $S_{Y}(\omega)=1$ for all ω. [In this case the transfer-function of the linear system is all-pass].
(b) (i) $H(z)=-1+2 z^{-1}-z^{-2}$ which gives:

$$
\begin{aligned}
H\left(e^{j \theta}\right) & =-1+2 e^{-j \theta}-e^{-2 j \theta} \\
& =e^{-j \theta}\left(-e^{j \theta}+2-e^{-j \theta}\right) \\
& =e^{-j \theta}(-2 \cos \theta+2)
\end{aligned}
$$

which gives $\alpha=1$ and $G=2-2 \cos \theta$. This is a high-pass filter with a constant delay of 1 sample.
(ii) The transfer function of the filter takes the form

$$
H(z)=\alpha \frac{1-z^{-1} / p^{*}}{1-z^{-1} p}
$$

for some constant α which gives

$$
\begin{aligned}
H\left(e^{j \theta}\right) & =\alpha \frac{1-e^{-j \theta} / p^{*}}{1-e^{-j \theta} p} \\
& =\frac{-\alpha e^{-j \theta}}{p^{*}} \frac{\left(1-e^{-j \theta} p\right)^{*}}{1-e^{-j \theta} p} .
\end{aligned}
$$

Hence

$$
\left|H\left(e^{j \theta}\right)\right|=\left|\frac{\alpha}{p}\right|
$$

which is constant. Thus a digital all-pass function may take the form:

$$
H(z)=\frac{z^{-1}-p^{*}}{1-z^{-1} p}
$$

A problem for real implementation is that the filter doesn't have real coefficients. To overcome this problem it could be placed in series with a similar filter with poles and zeros at the conjugate locations:

$$
H(z)=\frac{z^{-1}-p^{*}}{1-z^{-1} p} \frac{z^{-1}-p}{1-z^{-1} p^{*}}
$$

which can be multiplied out to give a filter with real coefficients.
Application in cascades of 2nd order filters for phase effects in digital audio. [40\%]

