
Crib of 3F1 exam 2022

1. (a) • H1(z) has a zero at -1 and a pole at 0.8. Since H(1) = 1 and H(−1) = 0, its
amplitude plot should start at 0dB and end at −∞ dB, which excludes Bode
diagram (A). Its phase starts at 0 and should remain monotonically decreasing
to −pi/2, excluding (C) where the phase clearly goes slightly positive. Hence,
Bode diagram (B) corresponds to H1(z). Following the same logic, Nyquist
diagram (3) is the only diagram whose phase never goes into the positive range.

• H2(z) is an FIR filter with two zeros at 0.9e±jπ/4 and two poles at the origin.
Its amplitude reponse should experience a noted dip when it passes close to
the zero at θ = π/4, which is only the case for Bode diagram (A). Its phase
diagram briefly exceeds π/2 around θ = 1, which is only the case for Nyquist
diagram (1).

• By exclusion, H3(z) must correspond to Bode diagram (C) and Nyquist diagram
(2). It is also clear that the phase and amplitude diagrams mirror that of the
FIR filter H2(z) (save a bias due to a different mulltiplicative constant up front.) [30%]

(b) For H1(z),
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For H3(z),
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[15%]

(c) All three systems are stable and hence have no unstable poles. The closed loop
system is stable if there are no encirclements of the point −1/K. Hence

• For H1(z), the system is stable for K > 0 and for K < −1.

• For H2(z), the system is stable approxmately for K < −1
0.06 = −16.7 and for

K > −1. The exact answer is H(ejθ) = 0.616 for θ = cos−1(
√

2/1.8), i.e.,
K < −16.2243 but you were not expected to compute this.

• For H3(z), the system is stable approximately for K < −1
0.18 = −5.6 and for K >

−1
2.82 = −0.35. Again, the exact answers are H3(e

jπ) = H3(−1) = 0.1743, i.e.,

K < −5.7386, and H3(e
jθ) = 2.8274 for θ = cos−1(

√
2/1.8), i.e., K > −0.3537,

but you were not expected to compute this. [20%]

(d) Reading from the Bode diagram, a unit step being a sinusoidal of zero frequency
uk = cos 0k, the steady-state response will be a unit step of the same amplitude
because |H1(e

j0)| = |H1(1)| = 1. The steady step response to vk = (−1)k = cosπk
is the all zero sequence because the gain of the system is zero at frequency π, i.e.,
|H1(e

jπ)| = |H1(−1)| = 0. [10%]

(e) We can invert the bilinear transformation to yield z = a+s
a−s and insert this expression

into H1(z) to obtain

H̃1(s) = 0.1
a+s
a−s + 1
a+s
a−s − 0.8

= 0.1
a+ s+ a− s

a+ s− 0.8a+ 0.8s
=

1

1 + 9a−1s

This shows that the analog filter was of the form

H1(s) =
1

1 + s/ωc
,

a first-order lowpass where ωc = a/9 is the 3dB cutoff frequency since 10 log10(|H1(jωc)|2) =
10 log10(1/2) ≈ −3. The discrete-time filter’s 3dB cutoff frequency is obtained by
solving ∣∣∣∣0.1 ejθ + 1

ejθ − 0.8

∣∣∣∣2 = 1/2
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which, after some manipulation, yields θ = cos−1(40/41) = 0.2213 rad. (An ap-
proximate value of θ = 0.2 obtained from the Bode plot is also satisfactory.) With
a sampling period of T = 1 ms the 3dB frequency should be ωc = 221.3 rad/sec
which gives

H1(s) =
1

1 + s
221.3

and a = 1992. [25%]
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2. (a) From the data book:

hk =
1

N

N−1∑
n=0

Hne
j2πnk/N

=
α

N
ej2π`k/N

for 0 ≤ k ≤ N − 1. But this expression is periodic with period N . Hence it is valid
for all k ≥ 0. Taking z-transforms gives:

H(z) =
∞∑
k=0

hkz
−k

=
α

N

∞∑
k=0

ej
2π`k
N z−k

=
α/N

1− ej2π`/Nz−1
.

[25%]

(b) This follows from the previous result by superposition due to the linearity of the
DFT: a vector (H0, . . . ,HN−1) with d non-zero terms can be written as a sum of
d vectors with one non-zero term, and hence the z transform H(z) is a sum of d
terms of the form

H`/N

1− ej2π`/Nz−1

for every non-zero term H`, which is a proper partial fraction expansion of a rational
function with d distinct poles. [10%]

(c) We can either take the inverse DFT to obtain a period of the sequence in the
time domain and take its z transform, or use the expressions and arguments in the
previous two questions to write out the z transform directly as

H(z) =
1

6

(
−1

1− z−1
+

1

1− e−jπ/3z−1
+

1

1− e−jπ/3z−1

)
=
−(1− 2z−1 cos π3 + z−2) + (1− z−1)(2− 2z−1 cos π3 )

6(1− z−1)(1− e−jπ/3z−1)(1− ejπ/3z−1)

=
1− 2z−1

6(1− z−1)(1− e−jπ/3z−1)(1− ejπ/3z−1)

and the pole-zero diagram is hence

Re

Im×

×

×

◦

[20%]
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(d) The amplitude plot has value 1/6, or, equivalently, −15.56 dB for θ = 0 or π and
tends to infinity as θ approaches π/3,

0 0.5 1.5 2 2.5

0

20

π
3

π

−15.56

|G(ejθ)| [dB]

θ [rad]
[15%]

(e) A sinusoidal with frequency θ = π/3, e.g., xk = sin(kπ/3) for k = 0, 1, 2, . . ., will
result in an unbounded output sequence because |G(ejθ| tends to infinity when θ
approaches π/3 and the “steady state” term of the output sequence is unbounded
(bearing in mind that the other terms do not necessarily decay). [10%]

(f) The transfer function of the open loop is G(z) = 1−2z−1

6(1−z−1+z−2)
and hence the transfer

function of the closed loop is

F (z) =
KG(z)

1 +KG(z)
=

K(1− 2z−1)(1− z−1 + z−2)

6(1− z−1 + z−2) +K(1− 2z−1)
=

K(1− 3z−1 + 3z−2 − 2z−3)

6 +K − (6 + 2K)z−1 + 6z−2

We can apply the initial value theorem

f0 = lim
z→∞

F (z) =
K

6 +K
=

1

1 + 6/K
.

[20%]
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3. (a) From the definition:

XN−k =
N−1∑
n=0

xn exp(−j2πn(N − k)/N)

=
N−1∑
n=0

xn exp(−j2πn(−k)/N).

Hence

X∗N−k =
N−1∑
n=0

xn exp(−j2πnk/N) = Xk

since xn is real. This does not hold if xn is not real. Also,

Xk+mN =

N−1∑
n=0

xn exp(−j2πn(k +mN)/N)

=

N−1∑
n=0

xn exp(−j2πnk/N) = Xk

when m is an integer. This continues to hold if xn is complex. [25%]

(b) Each term xn exp(−j2πnk/N) requires 2 real multiplications.

Thus, for eack k, 2N real multiplications are needed to evaluate Xk as well as
2(N − 1) ≈ 2N real additions to sum the real and imaginary parts separately.

But, note that Xk = X∗N−k implies that we only need to calculate the first N/2
frequency values since the rest are obtained by simple conjugation.

Thus the total cost is N2 real multiplications and N2 real additions.

For complex data we require 4 real multiplies for each xn exp(−j2πnk/N).

Thus, for each k, we require 4N real multiplications and 2N real additions.

But this time we need all N frequency components, so overall: 4N2 real multipli-
cations and 2N2 real additions. [25%]

(c) By definition of xn:

Xk = X
(1)
k + jX

(2)
k .

Hence

XN−k = X
(1)
N−k + jX

(2)
N−k

= X
(1)
k

∗
+ jX

(2)
k

∗

by the conjugacy property from (b). So,

X∗N−k = X
(1)
k − jX

(2)
k

Hence,
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X
(1)
k = 0.5(Xk +X∗N−k)

and

X
(2)
k = −0.5j(Xk −X∗N−k)

[25%]

(d) Complexity of Xk is 4N2 mults. and 2N2 additions.

Extraction of each k is 2 real additions for each of X
(1)
k and X

(2)
k .

This is carried out N/2 times for the required N/2 coefficients of the real DFT.

So in total: 4N2 mults. and 2N2 +N/2× 2 = 2N2 +N additions.

Compared with evaluation of 2 real DFTs: 2N2 mults and 2N2 addns. Thus we
do not benefit compared to an optimised real-valued DFT for each real sequence
as in part (b). [But we would benefit if general complex DFT was being used
throughout]. [20%]
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4. (a) The power spectral density, SX(ω), is given by

SX(ω) =

∫ ∞
−∞

rXX(τ)e−jωτdτ = 1

which is constant over all ω. For the output of the linear system y(t)

SY (ω) = |H(jω)|2SX(ω)

where H(jω) is the Fourier transform of h(t).

In case (i) H(jω) =
2

1 + jω
. Hence SY (ω) =

2

(1 + ω2)1/2
.

In case (ii) H(jω) = −1 +
2

1 + jω
=

1− jω
1 + jω

. Hence SY (ω) = 1 for all ω. [In this

case the transfer-function of the linear system is all-pass]. [35%]

(b) (i) H(z) = −1 + 2z−1 − z−2 which gives:

H(ejθ) = −1 + 2e−jθ − e−2jθ

= e−jθ(−ejθ + 2− e−jθ)
= e−jθ(−2 cos θ + 2)

which gives α = 1 and G = 2−2 cos θ. This is a high-pass filter with a constant
delay of 1 sample.
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[25%]

(ii) The transfer function of the filter takes the form

H(z) = α
1− z−1/p∗

1− z−1p
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for some constant α which gives

H(ejθ) = α
1− e−jθ/p∗

1− e−jθp

=
−αe−jθ

p∗
(1− e−jθp)∗

1− e−jθp
.

Hence

|H(ejθ)| =

∣∣∣∣αp
∣∣∣∣

which is constant. Thus a digital all-pass function may take the form:

H(z) =
z−1 − p∗

1− z−1p
.

A problem for real implementation is that the filter doesn’t have real coeffi-
cients. To overcome this problem it could be placed in series with a similar
filter with poles and zeros at the conjugate locations:

H(z) =
z−1 − p∗

1− z−1p
z−1 − p

1− z−1p∗

which can be multiplied out to give a filter with real coefficients.
Application in cascades of 2nd order filters for phase effects in digital audio. [40%]
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