
Crib of 3F1 exam 2023

May 23, 2023

1. (a) We solve the first di↵erence equation by writing it in the z domain

zA(z)� a0z = �A(z)

and hence

A(z) =
a0z

a� �
=

a0
1� �z�1

giving (from the data book)

ak = a0�
k
for k � 0.

(b) We transform the second di↵erence equation into the z domain to obtain

zB(z)� b0z = ↵(zA(z)� a0z)) + �A(z) + �B(z)

and hence

B(z) =
(b0 � ↵a0)z

z � �
+

↵z + �

z � �
A(z)

=
(↵a0 � ↵a0)z

z � �
+

(↵z + �)a0z

(z � �)2

=
(↵z + �)a0z

(z � �)2

(c) Using the initial value theorem, b0 = limz!1 B(z) = ↵a0, which is consistent

with the second equation.

(d) The z transform of a geometric sequence qk is

1

1� qz�1
= 1 + qz�1

+ q2z�2
+ . . . .

Taking the derivative with respect to q on both sides of this equation, we

obtain

z�1

(1� qz�1)2
=

z

(z � q)2
= z�1

+ 2qz�2
+ 3q2z�3

+ 4q3z�4
+ . . .

which, from examining the coe�cients of the power series in z�1
, is the z

transform of the sequence {kqk�1
}k�0.
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(e) We note that

B(z) = ↵a0
z2

(z � �)2
++�a0

z

(z � �)2

hence

bk = ↵a0(k + 1)�k
+ �a0k�

k�1
= a0 [↵�(k + 1) + �k] �k�1

and

ck = (1� �)bk = (1� �)a0 [↵�(k + 1) + �k] �k�1

(f) This is easiest done in the z domain because

1X

k=0

(ak + bk + ck) = A(1) +B(1) + C(1)

=
a0

1� �
+ (1 + (1� �))

(↵ + �)a0
(1� �)2

=
a0

1� �
+ (2� �)

(1� �)a0
(1� �)2

=
a0(3� �)

1� �
= 1

and hence

a0 =
1� �

3� �
.

(g) For � = 1/2 and ↵ = � = 1/4, a0 = 1/5,

ck =
1

10


1

8
(k + 1) +

1

4
k

�✓
1

2

◆k�1

=
1

40
(3k + 1)2

�k

and hence

E[C|game over] =

P1
k=0 kckP1
k=0 ck

=
3
P1

k=0 k
2
2
�k

+
P1

k=0 k2
�k

3
P1

k=0 k2
�k +

P1
k=0 2

�k

To evaluate those two sums we use the same derivation trick we used in part

(d) on the sum of a geometric sequence, namely,

8
>>>>>><

>>>>>>:

1
1�q =

P1
k=0 q

k

1
(1�q)2 =

P1
k=0 kq

k�1

q
(1�q)2 =

P1
k=0 kq

k

1+q
(1�q)3 =

P1
k=0 k

2qk�1

q(1+q)
(1�q)3 =

P1
k=0 k

2qk
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and hence 8
><

>:

P1
k=0 2

�k
= 2

P1
k=0 k2

�k
= 2

P1
k=0 k

2
2
�k

= 6

and so

E[C|game over] =
3⇥ 6 + 2

3⇥ 2 + 2
=

5

2
= 2.5

so the expected return (3 cookies) is more than the expected loss (2.5 cookies)

but personally I wouldn’t take a risk for an expected return of half a cookie

and would hence just eat the cookies I have.
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2. (a)

G(z) =
1

6
�
z�1
z+1

�2 ·

�
1 +

z�1
z+1

�3
z�1
z+1 +

1
3

=
(z + 1 + (z � 1))

3

2(z � 1)2(3(z � 1) + z + 1)

=
4z3

(z � 1)2(4z � 2)

=
1

(1� z�1)2
�
1�

1
2z

�1
� =

2

(1� 2z�1 + z�2)(2� z�1)

(b) The complete Nyquist diagram is

�2 �1 1 2

�2

�1

1

2

Re

Im

Since there are no open-loop poles outside the unit circle, the Nyquist stability

criterion requires no encirclements of �1/K to achieve stability. This applies

for �1/K < G(ej⇡) = 1/6 hence K > 0 or K < �6 results in a stable system.

(c) The z transform of the di↵erence equation is Y (z) = (1 � z�1
)X(z) hence

the transfer function of the FIR is (1 � z�1
), resulting in an overall transfer

function

H(z) =
1

(1� z�1)
�
1�

1
2z

�1
� =

z3

(z � 1)
�
z � 1

2

�

(d) The final value theorem applies here because the system has a single pole at

1 and the remaining pole inside the unit circle. Hence,

lim
k!1

hk = lim
z!1

(z � 1)H(z)

= lim
z!1

z3

z � 1
2

= 2
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(e) (i) The complete Nyquist diagram is

�4 �3 �2 �1 1 2 3 4

�4

�3

�2

�1

1

2

3

4

Re

Im

Since there are no open-loop poles outside the unit circle, the Nyquist

stability criterion requires no encirclements of �1/K to achieve stability.

This applies for �1/K < H(ej⇡) = 1/3 hence K > 0 or K < �3 results

in a stable system.

(ii) We can take polynomial approximations of exponentials as

H(ej✓) =
1

(1� e�j✓)
�
1�

1
2e

�j✓
�

=
1⇣

1�

h
1 + (�j✓) + (�j✓)2

2 + o(✓3)
i⌘ �

1�
1
2 [1 + (�j✓) + o(✓2)]

�

=
1⇣

j✓ � (j✓)2

2 + o(✓3)
⌘ �

1
2 +

j✓
2 + o(✓2)

�

=
2

j✓
·

1�
1� j ✓

2 + o(✓2)
�
(1 + j✓ + o(✓2))

=
2

j✓

✓
1 + j

✓

2
+ o(✓2)

◆�
1� j✓ + o(✓2)

�

=
2

j✓

✓
1�

j✓

2
+ o(✓2)

◆

= �1� j
2

✓
+ o(✓)
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3. (a) (i) x1 and x2 both satisfy the symmetry condition xk = x?
N�k and hence

their DFT is one of the two real vectors Xc and Xd. Xc satisfies the sym-

metry condition Xk = X?
N�k and hence its inverse DFT is real, while Xd

does not and hence its inverse DFT must be complex. This determines

that Xc corresponds to x1 while Xd corresponds to x2.

The remaining two vectors x3 and x4 do not satisfy the symmetry condi-

tion and hence their DFT must be one of the two complex solutions Xa

and Xb. We note that the first coe�cient of the DFT is the sum of the

components of the time domain vector, which is 3(u+w) for x1,x2 and

x3, and 4u+2w for x4. Since Xb,Xc and Xd have the same first coe�-

cient 6, the odd one out Xa must correspond to x4 while Xb corresponds

to x3 by exclusion of all other pairings.

To summarise, the pairings are (x1,Xc), (x2,Xd), (x3,Xb) and (x4,Xa).

(ii) Following the argument above, we get the set of equations

(
3u+ 3w = 6

4u+ 2w = 2

which has a unique solution (u, w) = (�1, 3).

(b) (i) The audio signal is unbiased, i.e., its mean is 0. While we cannot be sure

that the mean will be zero on each block of 1024 symbols, it will be close

to zero. Since the first element X0 of the DFT is the sum of the time

domain symbols, we expect it to be close to zero.

(ii) Since the signal is real valued, its DFT satisfies the symmetry condition,

hence X1024�37 = X987 = X?
37 = 4� 3j.

(iii) The real-world frequency is

k

N
fs =

37

1024
20⇥ 10

3
= 722.66 Hz

(iv) The FFT has complexity O(N logN) whereas direct computation of the

DFT by matrix multiplication has complexity O(N2
). The outcome does

not di↵er in any way from the outcome of a DFT as the FFT is just a re-

writing of the DFT operations in a manner that takes advantage of the

specific DFT matrix structure. In the specific example, computation via

the FFT results in approximately 10⇥ 2
10

= 10, 240 operations whereas

direct computation of the DFT results in 2
20

⇡ 10
6
, i.e., a million oper-

ations.

(v) The same outcome can be obtained from cutting out the middle half of

the DFT. Specifically, the new DFT vector should be

X0
= [X0, X1, . . . , X255, x,X769, . . . , X1023]
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where the middle value x can be set to 0: it represents the frequency

component at f 0
s/2 which is zero if the original signal had a bandwith of

4 kHz.

(vi) The e↵ect of the shift will be a multiplication in the frequency domain

by ejn✓ where ✓ = 2⇡/1024 for the 10th block, corresponding to a drift

of one sample. In this discussion, we neglect the marginal e↵ect of the

di↵erence between a cyclic shift and a linear shift: the phase e↵ect de-

scribed corresponds to a cyclic shift where the first sample of the block

has been shifted to the back of the block, whereas the actual sampling

drift will result in a linear shift where the last sample of the 10th block is

what should have been the first sample of the 11th block. The di↵erence

between those two cases is negligible as only one sample is involved. The

shift can be compensated by applying a multiplication by ejn⇡/5120 to

every DFT vector computed, corresponding to a cyclic shift of one tenth

of a sample.
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4. (a) The variance is rXX(0) or the inverse Fourier transform of the power spectral

density evaluated at ⌧ = 0, i.e.,

�2
X =

1

2⇡

Z 1

�1
SX(!)e

j!0d!

=
KL

⇡

Z 1

�1

1 + 12L2!2

(1 + 4L2!2)2
d!

=
KL

⇡

Z ⇡/2

�⇡/2

1 + 3 tan
2 ✓

(1 + tan
2 ✓)2

(1 + tan
2 ✓)

d✓

2L

=
K

2⇡

Z ⇡/2

�⇡/2

1 + 3 tan
2 ✓

1 + tan
2 ✓

d✓

=
K

2⇡

Z ⇡/2

�⇡/2

(1 + 2 sin
2 ✓)d✓

=
K

2⇡

Z ⇡/2

�⇡/2

(2� cos 2✓)d✓

=
K

2⇡


2✓ �

1

2
sin 2✓

�⇡/2

�⇡/2

= K

where in step 2 we substituted tan ✓ = 2L! and hence (1+ tan
2 ✓)d✓ = 2Ld!.

(b)

SX(!) = 2KL
1� (j

p
12L!)2

(1� (j4L!)2)2

=

p

2KL
1 + j

p
12L!

(1 + j
p
4L!)2

p

2KL
1� j

p
12L!

(1� j
p
4L!)2

=

�����
p

2KL
1 + j2

p
3L!

(1 + j2L!)2

�����

2

where the last step follows from the fact that a complex number times its

conjugate equals its magnitude squared.

(c) As shown in the lecture, a variance Var(Wk) = 1/h achieves limh!0
1
TE [|Uh(j!)|2] =

1 for all ! and hence limh!0
1
TE [|Yh(j!)|2] = |H(j!)|2.

(d) (i) The step invariant transform is

H(z) = (1� z�1
)Z

⇢
L

�1H(s)

s

�

t=kh

where H(s) =
p
2KL1+2

p
3Ls

(1+2Ls)2 as shown in (b) where we have replaced

j! by the Laplace variable s and used the sampling intervals h as given.
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We use partial fractions to invert the Laplace transform

H(s)

s
=

p

2KL


A

s
+

B

1 + 2Ls
+

C

(1 + 2Ls)2

�

=

p

2KL ·
A+ 4ALs+ 4AL2s2 +Bs+ 2BLs2 + Cs

s(1 + 2Ls)2

yielding 8
><

>:

A = 1

4AL+B + C = 2
p
3L

4AL2
+ 2BL = 0

and hence A = 1, B = �2L and C = 2(
p
3� 1)L, giving

H(s)

s
=

p
2

s
+

5
p
2

s+ 5
+

5(
p
3� 1)

(s+ 5)2

where we have inserted the given values K = 10 and L = 0.1, and H(t)
is the Heaviside step function H(t) = 0 for t < 0 and H(t) = 1 for t � 0.

We thus obtain the continous time impulse response

h(t) =
p

2H(t) + 5

p

2e�5t
+ 5(

p

3� 1)te�5t

and sample it at intervals h to obtain the sequence

gk =
p

2 + 5

p

2e�5kh
+ 5(

p

3� 1)khe�5kh
for k � 0.

We now move to the z domain to obtain the discrete-time transfer func-

tion by multiplying the z transform of the sequence gk (which is the

step-response of the system) by (1� z�1
) to obtain the transfer function

H(z) = (1� z�1
)G(z)

= (1� z�1
)

" p
2

1� z�1
+

5
p
2

1� e�5hz�1
+

5(
p
3� 1)e�5hz�1

(1� e�5hz�1)2

#

=

p

2 + 5

p

2
z � 1

z � e�5h
+ 5(

p

3� 1)e�5h z � 1

(z � e�5h)2

(ii) The power spectral density has a double pole at the frequency ! =
1
2L

rad · s
�1
. The digital model covers frequencies up to half the sampling

frequency, i.e., fs/2 =
1
2h Hz for a sampling interval h. For the system

to be accurate, we must have

1

2⇡
·
1

2L
⌧

1

2h
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and hence h ⌧ 2⇡L = 0.62 s for L = 0.1. Hence, a sampling interval of,

say, h = 10ms would be a good choice.

The step invariant response is appropriate in this case because in the

derivation of the convergence of the power spectral density of the sys-

tem output alluded to in part (c), i.e., limh!0
1
TE [|Yh(j!)|2] = |H(j!)|2,

a piecewise constant signal with constant intervals of length h was as-

sumed, and hence the resulting continuous time filter output is a su-

perposition of step responses. Modeling the digital system using the

step-invariant transformation ensures that the digital signal obtained at

the output of the digital filter is equivalent to sampling the output of the

continuous time filter, so its statistical properties and in particular the

scaling with the variance of the variables Wk are maintained.
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Engineering Tripos Part IIA, 2023 
Assessor’s Report 
Module 3F1: Signals and Systems 
 
The examina*on was taken by 164 students, including 9 who did not have a mark for Part IB. 
The percentual mean mark was 62.38% and the standard devia*on on this was 12.29.  
 
Ques%on 1: z Transform 
A2empts: 161, mean 12.6/20, highest 19/20, lowest 4/20 
This ques*on covered applica*ons of the z transform based on probabilis*c analysis of a 
game (inspired by DNA alignment). There was some concern expressed by the external 
examiner and 2nd assessor that students might struggle with the probabilis*c aspects of the 
ques*on since 3F1 does not cover probabili*es (but then neither does it cover many of the 
other applica*ons of the z transform used as a basis for past ques*ons). The ques*on 
required no understanding of underlying probability because all relevant difference 
equa*ons were given. The only probability knowledge students needed was how to 
compute an expecta*on for a given probability distribu*on. As it turns out, almost none of 
the students struggled with the probabilis*c aspects of the ques*on and all students took 
the ques*on at face value, aQemp*ng to solve difference equa*ons. What is more 
concerning is that a fairly large propor*on of students failed to understand the link between 
the z transform and difference equa*ons. Ques*ons about the z transform were answered 
well, showing that all had understood the proper*es of the transform, but ques*ons about 
difference equa*ons were answered by some students by wri*ng down instances of 
equa*ons in the *me domain for k=0,1,2,3… and trying to guess the recursion rule as one 
would have done at A levels, without using the z transform. This indicates a weakness in the 
examples papers that insufficiently emphasises the raison d’être for the z transform and will 
be addressed in next year’s course by introducing new ques*ons that highlight the use of 
the z transform for solving difference equa*ons.  
 
Ques%on 2: Stability 
A2empts: 165, mean 12.6/20, highest 20/20, lowest 4/20 
This popular ques*on was very much in line with past examples papers and generally 
answered well. All students knew how to complete a Nyquist diagram by mirroring the curve 
given for posi*ve frequencies about the x axis, but many struggled when comple*ng the 
curve with a loop “at infinity” when going from frequency 2p to 0. Some otherwise good 
students also forgot that poles on the unit circle can be considered inside the unit circle for 
the purpose of the Nyquist stability criterion (stability of the close loop inferred from the 
posi*on of the poles in the open loop system) even though they would cause instability for 
the open loop. Overall, this was the ques*on the students struggled with the least given that 
it was quite similar to past exam ques*ons.  
 
Ques%on 3: Discrete Fourier Transform 
A2empts: 17, mean 12.6/20, highest 18/20, lowest 3/20 
This was a surprisingly unpopular ques*on, given that it required far less algebra and hence 
less *me than other ques*ons. Those who did solve it came in three groups: about 10 
students did very well on the ques*on, 3 students were close to the average, and 4 students 
had very low scores that weighs the average down. The main reason for the ques*on’s 



unpopularity is probably that the topic was presented in revised form in lectures this year, 
but the corresponding examples paper was not yet changed, giving students insufficient 
opportunity to prac*ce what they had learned in lectures. This will be addressed in next 
year’s course. There was a typo in this ques*on that was reported a`er the exam had ended. 
It clearly caused confusion for 2 students, may have caused confusion for another 2, and 
clearly caused no confusion for the remaining 13 students. An annex to this report details 
the typo, its effect, remedial ac*ons, and evidence collected in individual cases to decide 
whether the typo had caused any confusion.  
 
 
Ques%on 4: Random Processes 
A2empts: 152, mean 12.1/20, highest 18/20, lowest 5/20 
This ques*on covered another part of the course that has been revised this year. A new 
ques*on in the examples paper allowed students to gain more familiarity with the new way 
of introducing random processes and hence more students were willing to aQempt this 
ques*on. The ques*on required quite a lot of algebra and was marked leniently as very few 
students succeeded in comple*ng those calcula*ons without errors, which is 
understandable under exam pressure. Many students only aQempted a few parts of this 
ques*on, so that despite lenient marking it has a lower average. This is probably an 
indica*on of bad *me management rather than difficulty with the actual ques*on, as many 
students would have done this ques*on last if aQemp*ng ques*ons in order of their 
numbering.  



3F1 Examina+on 2023 – Report on handling of typo in Ques+on 3 
 
Introduc)on: ques&on 3(a)(i) gave a list of 4 &me-domain vectors (x1,x2,x3,x4) and a list of 4 
frequency-domain vectors (Xa,Xb,Xc,Xd) and students were asked to determine which 
frequency-domain vector corresponds to which &me-domain vector. This ques&on could be 
solved easily based on two proper&es of the Discrete Fourier Transform (DFT):  

1. Time-domain vectors sa&sfying the “conjugate symmetry property” have 
corresponding real-valued (as opposed to complex-valued) frequency-domain 
vectors, and vice versa, real-valued &me-domain vectors correspond to frequency 
domain vectors sa&sfying the “conjugate symmetry property”.  

2. The first component “X0” of a frequency-domain vector is simply the sum of all the 
components of the &me-domain vector (note that it is common prac&ce to index 
vectors from 0 to N-1 when working with the DFT).  

 
Typo: it was intended that the frequency-domain vector Xa should sa&sfy the conjugate 
symmetry property and correspond to &me-domain vector x4. However, a typo resulted in a 
change of sign in the imaginary part of one component and as a result this vector no longer 
obeyed the conjugate symmetry property. 
 
Why this typo was not discovered by the assessors: all frequency-domain vectors except Xa 
had a first component of 6, whereas Xa’s first component was 2. It was easy to immediately 
assign Xa to x4 by no&cing that x4 is the &me-domain vector whose sum was different from 
the other 3. Anyone who solves the problem this way never needs to further scru&nise Xa 
and would miss the fact that it didn’t sa&sfy the conjugate symmetry property. This is also 
what the crib did.  
 
How this typo was reported: nobody raised a ques&on during the exam. A few days aUer 
the exam, a student went to view the exam paper at the department Teaching Office and 
reported the typo to the Director for Undergraduate Educa&on.  
 
Remedial ac)ons:  

- Every submiZed script was carefully analysed for evidence that the typo caused 
confusion or delay.  

- For those for whom there was evidence or even just a suspicion that it may have 
caused confusion or delay, tailored remedial ac&on was taken as described for each 
individual case below. 

- For all students, Ques&on 3(b)(ii) further probed understanding of the conjugate 
symmetry property and was hence marked leniently. The correct answer was  
X987=4-3j as per the conjugate symmetry property, but any candidate who forgot to 
conjugate (X987=4+3j) or got the index slightly wrong (X986 or X988=4-3j) was awarded 
full points for this ques&on (1 point).  

- A further version of the exam paper JS/5 will be produced and uploaded to “past 
exams” on the department website so as not to cause confusion to future revising 
students.  

 
Sta)s)cs:  Ques&on 3 was the least popular ques&on and was selected by only 18 out of 169 
candidates (including one candidate who solved 4 ques&ons and for whom Q3 was the 



weakest and hence not counted). There were only 2 scripts with clear evidence that the typo 
caused confusion or delay, and 2 scripts for which there is a sufficient basis to suspect that 
the typo may have caused confusion. For the remaining 14 scripts, it is either clear that the 
candidate followed the same solu&on path as the crib and never scru&nised Xa further, or 
there is sufficient evidence that the candidate has misunderstood DFT proper&es so as to 
exclude that they would have the ability to iden&fy the typo. 
 
[The following sec&ons detail individual cases and remedial ac&on taken for the 4 scripts 
affected and have been deleted from the anonymised report.] 
 


