
Crib of 3F1 exam 2024

May 24, 2024

1. (a) The pole zero diagrams in the Argand plane are below.
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(b) H1(z) has poles on the unit circle for θ = π/2 and hence must be going to
infinity and coming back within the range 0 to π. This is (b).

Graphs (a) and (c) are similar in that they both touch the real axis at 2/3,
corresponding to H2(e

jπ) = H2(−1) and H3(e
j0) = H3(1). However, as

H3(e
jθ) leaves the real axis, its angle becomes positive because the angle

from the zeros on the Argand diagram is larger than the angle from the
poles. Hence (a) is H3(z) and (c) is H2(z).

(c) The complete Nyquist diagrams are given below.
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(d) All 3 systems can be made stable. For H1(z), −1/K > 3/2 results in a stable
system, hence −2/3 < K < 0. For both H2(z) and H3(z), −1/K < 1/3
results in stable systems, hence K < −3 or K > 0.

(e) The output of the system is

Y (z) = H1(z)X(z) =
z + 2

z2 + 1
· 1

1 + z−2
=

z3 + 2z2

(z2 + 1)2

and hence using the hint we obtain for k ≥ 0,

yk = −k + 1

2
cos

π

2
(k + 1)− k cos

π

2
k, which grows linearly with k.

(f) The closed loop transfer function is

G(z) =
KH1(z)

1 +KH1(z)
=

−1
2

z+2
z2+1

1− 1
2

z+2
z2+1

=
−1− 1

2
z

z2 + 1− 1− 1
2
z
= −1

2
· z + 2

z
(
z − 1

2

)
which is clearly a stable system as its poles are inside the unit circle. As
K = −1/2 lies within the stability range we predicted by analyising the
Nyquist diagram, this is reassuring. We obtain the stationary response by
computing

G(ej
π
2 ) = −1

2
· j + 2

j(j − 1
2
)
=

1

2
· 2 + j

1 + 1
2
j
= 1

and hence the stationary response is simply equal to the input
{
cos π

2
k
}
k≥0

.

2. (a) (i) We write the equations in the z domain
U(z) + z−1Y (z) = Y (z)

4W (z) + 2z−1Y (z) = 3X(z)

2Y (z) + 2z−2W (z) = 3z−1U(z)

then resolve them to obtain

G(z) =
Y (z)

X(z)
=

3
2
z−2

z−3 − 3z−2 + 3z−1 − 2
=

−3
4
z

z3 − 3
2
z2 + 3

2
z − 1

2

(ii) We compute Y (z) = G(z)X(z) = G(z) z
z+1

(noting that cosπk = (−1)k)

Y (z) =
−3

4
z2

(z + 1)(z − 1
2
)(z2 − z + 1)

=
1/6

z + 1
− 1/6

z − 1
2

− 1/2

z2 − z + 1

=
1

6
z−1 1

1 + z−1
− 1

6
z−1 1

1− 1
2
z−1

− 1

2 sin π
3

z−1 sin π
3
z−1

1− 2 cos π
3
z−1 + z−2

and hence the output sequence is

yk =
1

6
cos (π(k − 1)) − 1

6

(
1

2

)k−1

−
√
3

3
sin

(π
3
(k − 1)

)
2



(b) (i) • x1 is a real vector that isn’t symmetric (x1 ̸= x5) so its DFT must
be complex but obey conjugate symmetry: Xf

• x2 is a complex vector that is not conjugate symmetric (x3 is com-
plex and hence not its own conjugate) and every even component
is zero. Its DFT should be complex, not symmetric, and its second
half should be equal to minus its first half: Xa.

• x3 is a complex vector that obeys conjugate symmetry and its sec-
ond half equals minus its first half, so its DFT should be real not
symmetric, and every even entry should be zero: Xe.

• x4 is a real symmetric vector whose second half equals its first half
so its DFT should be real, symmetric, and every odd entry should
be zero: Xb.

• x5 is a complex vector that obeys conjugate symmetry and every
odd entry is zero, so its DFT should be real, not symmetric, and its
second half equals its first half: Xc

• x6 is a real symmetric vector, so its DFT should be real, symmetric:
Xd.

(ii) The first component of Xd is u−w should be the sum of x6, 2, and the
first component of Xb is u should be the sum of x4, 3. Hence u = 3
and w = 1.

3. (a) (i) The normalised corner frequency is θ0 = 2π(8/48) = π/3. We pre-warp
this frequency into an analogue corner frequency ω0 = tan(θ0/2) =

tan π
6
=

√
3
3

and design the digital filter by applying the bilinear trans-
form to the filter 1

1+s/ω0

H(z) =
1

1 + 1
ω0

· z−1
z+1

=
z + 1

z + 1 +
√
3(z − 1)

=
1√
3 + 1

· z + 1

z −
√
3−1√
3+1

=

√
3− 1

2
· z + 1

z − 2 +
√
3

(ii) The filter has a pole at 2−
√
3 = 0.268 and a zero at −1.

(iii) We compute

|H(ejπ/3)| =
√
3− 1

2

∣∣∣∣∣ 1
2
+ j

√
3
2
+ 1

1
2
+ j

√
3
2
− 2 +

√
3

∣∣∣∣∣ =
√
3− 1

2

√
9
4
+ 3

4

(3
2
−
√
3)2 + 3

4

=

√
3(
√
3− 1)2

4(6− 3
√
3)

=

√
12− 6

√
3

24− 12
√
3
=

√
2

2

(Note that a calculator-based solution is sufficient to get full points. . . )

20 log10

√
2

2
= −10 log10 2 ≈ −3 dB.
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(b) (i) We compute

hk =
1

2π

∫ π/3

−π/3

ejkθdθ =
1

2πkj
(ejkπ/3−e−jkπ/3) =

sin(π
3
k)

πk
=

1

3
sinc

(π
3
k
)

where sinc(x) = sin(x)
x

.

(ii) We compute the five samples around zero as

[h−2, h−1, h0, h1, h2] =

[√
3

4π
,

√
3

2π
,
1

3
,

√
3

2π
,

√
3

4π

]
= [0.14, 0.28, 0.33, 0.28, 0.14]

and shift to make it causal [h0, h1, h2, h3, h4] = [0.14, 0.28, 0.33, 0.28, 0.14]
and state the transfer function of the FIR

H(z) = 0.14 + 0.28z−1 + 0.33z−2 + 0.28z−3 + 0.14z−4.

(iii) We evaluate

|H(ejπ/3)| =
∣∣0.14 + 0.28e−jπ/3 + 0.33e−j2π/3 + 0.28e−jπ + 0.14e−j4π/3

∣∣ = 0.47

The exact result is |H(ejπ/3)| = 1
3
+

√
3

4π
. Note that this absolute gain

is misleading as the gain at θ = 0 is not 1 as in the previous question.
The gain relative to the gain at frequency zero can be computed as

|H(ejπ/3)|
|H(ej0)|

=
1
3
+

√
3

4π

1
3
+ 6

√
3

4π

= 0.4061

corresponding to a −7.8dB gain. Computing the absolute gain was
enough to get full points on this question.

(c) (i) We obtain the step response by inverse Laplace transform of H(s)/s,
for which we need partial fractions

U(s) =
1

s
− 1

s+ ω1

which gives the time domain function u(t) = H(t)−e−ω1t, where H(t) is
the Heaviside step function, not to be confused with the analogue filter
transfer function in this question.

(ii) We sample the step response to give

uk = H(kT )− e−ω1kT

where ω1T = ω1/fs = π/3. We then divide the digital step response in
the z domain by a digital step 1

1−z−1 to obtain

G(z) = (1− z−1)
∞∑
k=0

(1− ekπ/3)z−k = 1− 1− z−1

1− eπ/3z−1
=

1− eπ/3

z − eπ/3
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Its gain for z = ejπ/3 is

|G(ejπ/3)| =
∣∣∣∣ 1− eπ/3

ejπ/3 − eπ/3

∣∣∣∣ = 0.74

and 20 log10 |G(ejπ/3)| = −2.63 dB.

4. (a) The PSD is the Fourier transform of the auto-correlation function, i.e.,

SXX(ω) =

∫ ∞

−∞
rXX(t)e

−jωtdt

=
τ

2

(∫ 0

−∞
e(

1
τ
−jω)tdt+

∫ ∞

0

e−( 1
τ
+jω)tdt

)
=

τ 2

2

(
1

1− jωτ
+

1

1 + jωτ

)
=

τ 2

1 + τ 2ω2

(b) The output Y of the linear system has PSD

SY Y (ω) = |H(ω)|2SXX(ω)

H(ω) is the Fourier transform of the impulse response h(t) = e−αt,

H(ω) =

∫ ∞

0

e−αte−jωtdt =
1

α + jω

hence

SY Y (ω) =
1

α2 + ω2
· τ 2

1 + τ 2ω2

=
τ 2

1− τ 2α2

(
1/α2

1 + ω2/α2
− τ 2

1 + ω2τ 2

)
By inspection from (a) this gives an auto-correlation function for Y of

RY Y (t) =
τ 2

1− τ 2α2

(
1

2α
e−α|t| − τ

2
e−|t|/τ

)
and

σ2
Y = RY Y (0) =

τ 2

1− τ 2α2

(
1

2α
− τ

2

)
=

τ 2/α2

2 (τ + 1/α)

(c) The process X can be obtained by filtering white noise through a filter
G(ω) = τ

1+jωτ
, which relates an input signal U(ω) to an output signal X(ω)

via the equation X(ω) = G(ω)U(ω) and hence X(ω) + jωτX(ω) = τU(ω),
corresponding to the differential equation

x+ τ
dx

dt
= τu.
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The discrete system proposed in the question is an Euler approximation of
this differential equation, i.e.,

x(kδ) + τ
x((k + 1)δ)− x(kδ)

δ
= τuk.

Re-arranging, we obtain

x((k + 1)δ) =

(
1− δ

τ

)
x(kδ) + δuk

implying that a = δ/τ . As we learned in lectures, to obtain a discrete ap-
proximation of a continuous random process that converges to the correct
process as δ tends to zero, the input zero-mean i.i.d. random variables need
to be normalised so their variance scales with 1/δ. Hence, assuming that
uk = cwk, i.e., the variables uk in our equations are the scaled unit variance
variables wk in the question, we conclude that b =

√
1/δ.
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