






Question 2

(a) Given the sampling frequency f = 44.1 KHz and the cut-o↵ frequency of !` = 500Hz
and !h = 4KHz the normalized cut-o↵ frequency reads

✓` = !`T⇡ = (!`/f)⇡ ' 0.0356 ✓h = (!h/f)⇡ ' 0.3562

For the low pass filter A, let L be the ideal low-pass filter with normalized cut-o↵
frequency ✓c. By Fourier anti-transform, F�1,

`k = F�1(L) =
1
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.

Rectangular windows corresponds to a simple truncation. For M = 100, causality
is then achieved via a shifting of 50 samples. Combined these operations lead to the
FIR filter with impulse response

ak =
sin(✓`(k � 50))

⇡(k � 50)
0  k  M = 100 .

For B, we take the ideal filter H = 1� L. By Fourier anti-transform and linearity,

hk = F�1(1�H) = F�1(1)� F�1(H) = �k �
sin(!ck)

⇡k

where �k is the unit pulse signal. So, as above,

bk = �k�50 �
sin(✓h(k � 50))

⇡(k � 50)
0  k  M = 100 .

(b) A generic FIR filter G has linear phase G(ej✓) = |G(ej✓)|e�j✓M
2 whenever it is

symmetric, i.e. gk = gM�k. So, A and B have linear phase, starting at 0 and ending
at �⇡M

2 , as sketched below.

⇡0

50⇡

Figure 1: The linear phase of the filters A and B.

(c) Given the normalized cut-o↵ frequency above, the equivalent pre-warped analogue
filter cuto↵ frequency corresponds to

✓̄` = tan(✓`/2) = tan(0.0178) ' 0.0178 ✓̄h = tan(✓h/2) = tan(0.1781) ' 0.1800 .

Using the suggested band transformation and the bilinear transform, the band-pass
filter is given by

C(z) =
1

( z�1
z+1)

2
+✓̄`✓̄h

( z�1
z+1)(✓̄h�✓̄`)

+ 1
.

Students should simplify this expression as much as possible.
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(d) We can hear sounds up to !max = 20KHz. From Shannon theorem, the sampling
frequency must be greater than 2!max = 40KHz. This guarantees that the original
signals can be reconstructed after sampling without distortion (at least in theory).
The sampling frequency f satisfies f � !0 so it is adequate. The reason why f

is taken slightly larger than 40KHz is justified by the use of non-ideal filters at
reconstruction, to take into account of the filters’ transition band.

f` = f/2 < 2!max therefore it does not satisfy Shannon theorem. With that sam-
pling frequency there are sounds that we would not be able to reconstruct. Re-
constructed signals would be a↵ected by aliasing, that is, by frequency distortion.
In the time domain this means that sampling would map di↵erent sounds into the
same sequence of samples, making them indistinguishable at reconstruction stage.

fh = 2f > 2!max satisfies Shannon theorem. This frequency is adequate for sam-
pling. However, in comparison to f , sampling at frequency fh would double the
amount of data, requiring more storage. This makes fh non optimal.

(e) A and B are FIR filters with horizon M = 100 and a N -points FFT hardware with
N = 1024. Let’s use gk to denote the impulse response of each filter, and xk to
denote the input samples to the filters.

1. set the filter into an array of 1024 elements G = [g0 g1 . . . gM 0 . . . 0].

2. Organise the input samples into arrays of 1024 elements

• X0 = [ 0 . . . 0| {z }
M samples

| x0 . . . xN�M�1| {z }
N�M samples

]

• X1 = [ xN�M�1�M . . . xN�M�1| {z }
M last samples from the previous frame

| xN�M . . . x2(N�M)�1| {z }
N�M new samples

]

• . . .

• Xk = [ ⇤ . . . ⇤| {z }
M last samples from previous frame

| ⇤ . . . ⇤| {z }
N�M new samples

].

3. Apply FFT: Ḡ = FFT(G), X̄k = FFT(Xk) for all k � 0.

4. Compute the output arrays Ȳk = GXk, for all k � 0.

5. Apply inverse FFT: Yk =
1
NFFT(Ȳ ⇤

k )⇤ for all k � 0.

6. Reconstruct the filter output by extracting data from each array. For all k � 0,

Yk = [ ⇤ . . . ⇤| {z }
remove the first M samples

| ⇤ . . . ⇤| {z }
collect N�M samples respecting their order

].

The collected samples correspond to the output samples yk of the filter.
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Question 3

(a) Step response invariance corresponds to the following operations

P (z) =
z � 1

z
Z
✓
L�1

✓
G(s)

s

◆

t=kT

◆
.

Specifically, using partial fractions,

G(s)

s
=

A

s
+

B

s+ d

where A = 1/d and B = �1/d. Then, Laplace anti-transform and sampling lead to

L�1

✓
G(s)

s

◆

t=kT

=
1

d

�
1� e

�dTk
�
.

Applying the Z transform gives

Z
✓
L�1

✓
G(s)

s

◆

t=kT

◆
=

1

d

✓
1

1� z�1
� 1

1� e�dT z�1

◆

Finally, multiplication by z�1
z = 1� z

�1 gives

1

d

✓
1� 1� z

�1

1� e�dT z�1

◆
=

1

d

✓
1� z � 1

z � e�dT

◆
= P (z) .

Stability is preserved for any T > 0 since P (z) has a pole in e
�dT which is inside

the unit circle for any T > 0.

(b) The right plot is (b). P (z) has one stable pole, therefore the magnitude plot is
monotonically decreasing. This is not satisfied by diagram (a).

The right phase plot is (c). P (z) has one stable pole, therefore the phase goes from
0 to �180 degrees. This is not satisfied by diagram (d).

For ! ! 0 the frequency the magnitude plot is at 0 dB therefore d = 1.

d modulates the gain of the transfer function P (z): for larger (smaller) d, the
magnitude plot decreases (increases) of a factor 1

d , that is, �20 log(d). The pole
in e

�dT = e
�0.02d moves closer to zero (closer to the unit circle) as d increases

(decreases). As a consequence, the system shows faster (slower) transients, thus the
roll-o↵ moves at higher (lower) frequencies.

(c) The discretized input reads

u(k) = 3 + w sin(!k) .

For T = 0.02, using linearity, the steady-state response of the car is

y = 3|P (0)|+ 2|P (ej!T )| sin(!k + \P (ej!T )) .

From the Bode diagrams in Figure 1(b) and in Figure(c), |P (0)| = 0dB = 1,
|P (ej!T )| = |P (ej0.02)| = �3dB = 10�3/20 ' 0.7079, and \P (ej!T ) = �⇡

4 .

For larger !, |P (ej!T )| reduces therefore the oscillations of the output speed become
less noticeable.
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(d) The correct Nyquist diagram is the left one: K(z) has a pole on the unit circle,
therefore the Nyquist diagram must have an asymptote. The completed Nyquist
diagram is in Figure 2.

Re

Im

�1

Figure 2: The complete Nyquist diagram
.

There are no unstable poles in open loop. Thus, from the Nyquist criterion, closed-
loop stability requires a Nyquist locus with 0 encirclements of the point �1

k . It
follows that the closed loop is stable for any 0  k < 1.
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Examiner's comments 

Q1 Z-transform derivation and random process modelling 

This question was unpopular and caused the most difficulty. ai) Around one third did not properly 
define linearity. aii) More than half struggled to derive a Z-transform by differentiating with respect 
to a, this was analogous to a calculation done in lectures and in the notes. bi-ii) The second part of 
the question on random processes (second order system driven by white noise) was better 
answered, with most realising conceptually what was required. biii) many students (around 70%) 
were unable to describe a physical system that the model might correspond to (e.g. a damped 
oscillator, RCL circuit, mass-spring-dashpot etc). 

Q2    Filter design (FIR, IIR), phase diagrams, Shannon’s theorem and aliasing, FFT 

A popular question. (a) minor issues with normalized frequency. More mistakes on high-pass than on 
low-pass filters. (b) is very easy but was not answered by most student; (c) minor issues on 
frequency warping, (d) well-addressed by most students, (e) most students remembered how to use 
FFT for filtering but had a few mistakes in organizing data in batches. 

Q3    Discretization, Bode plots, steady-state response, Nyquist criterion 

A popular question. (a) well answered by most; (b) a few students were confused by the presence of 
a resonance in Bode diagrams; (c) minor issues in using linearity; (d) well addressed by most of the 
students with standard mistakes on the use of Nyquist for stability.Q4 Continuous time random 
processes 

Q4    Step response/difference equations, power spectral density 

A popular question. ai) The first part was a straightforward calculation to find the step response of a 
discrete time linear system which was generally well answered. aii) Many students incorrectly stated 
that poles on the unit circle indicate a stable system. aiii) Many students were unable to derive a 
difference equation representation of the system. bi) Most answered this correctly, but many 
performed a long calculation to establish WSS, when all that was needed (for 1 mark) was to state 
that the system was LTI with WSS input. bii-iii) This involved the calculation of the frequency 
response of a continuous time LTI system. Most could recall the key relationships derived in lectures 
and apply them, but many were unable to evaluate a the integral in part (iii) to obtain the 
autocorrelation function from the power spectral density. 


