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EGT2
ENGINEERING TRIPOS PART IIA

Tuesday 30 April 2024 9.30 to 11.10

Module 3F2

SYSTEMS AND CONTROL

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of the
exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
You may not remove any stationery from the Examination Room.
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1 (a) (i) Explain, in one sentence, what is meant by controllability of a linear
dynamic system. [10%]

(ii) Controllability can be verified by checking that the controllability Grammian
is a positive definite matrix. What is the advantage of this criterion with respect to
the usual controllability matrix rank condition ? [10%]

(b) Consider the single input single output system

¤𝑥 = −Λ𝑥 + 𝑓 𝑢

𝑦 = 𝑓 𝑇𝑥

where the matrix Λ is assumed to be diagonal and positive definite.

(i) What are the conditions on the coefficients of the matrix Λ and of the vector
𝑓 for this system to be controllable ? [30%]

(ii) Show that the impulse response of the system is positive for all 𝑡 ≥ 0. Sketch
both the impulse response and the step response. [10%]

(iii) For the special case Λ = 𝐼, find a minimal representation of the system. [10%]

(c) The system

¤𝑥 = −𝑃𝑥 + 𝑏𝑢
𝑦 = 𝑏𝑇𝑥

is called a relaxation system if the matrix 𝑃 is symmetric, i.e. 𝑃 = 𝑃𝑇 , and if it has 𝑛
distinct positive eigenvalues.

(i) Explain how to determine a change of coordinates 𝑧 = 𝑇𝑥 that transforms
any relaxation system in the diagonal form studied in part (b). Find the relationship
between the matrices 𝐴 and Λ and the vectors 𝑏 and 𝑓 . Deduce the conditions on
the matrix 𝑃 and on the vector 𝑏 for a relaxation system to be controllable. [20%]

(ii) Why is such a system called a relaxation system ? [10%]
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2 (a) Explain the basis for controller design using observers and estimated state
feedback as it applies to a state-space system of the form

¤𝑥 = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥

Mathematical results may be stated without proof. [20%]

(b) A force 𝑢(𝑡) is applied to a mass-damper mechanical system with mass 𝑀 and
damping coefficient 𝑘 . The position 𝑧(𝑡) is measured. An observer is to be designed
for its velocity.

(i) Write a state-space model for the mechanical model 𝑀 ¥𝑧+ 𝑘 ¤𝑧 = 𝑢 with position
and velocity as state variables. [10%]

(ii) Denoting the state of the observer as 𝑥, write down the state-space equation of
the observer in terms of its gain matrix H. [20%]

(iii) Find the transfer function of the observer, from 𝑢 and 𝑧 to 𝑥1. If the relationship
between 𝑧 and 𝑢 satisfies𝑀 ¥𝑧+𝑘 ¤𝑧 = 𝑢, under what further condition will the observer
state asymptotically converge to the position and velocity ? [20%]

(iv) Suppose that the position sensor has a constant bias resulting in the
measurement 𝑧(𝑡) + 𝑏 for some constant but unknown value 𝑏. Explain how the
observer designed in part (b)(iii) can be modified to ensure exact estimation of the
position (and velocity) despite the sensor bias. [20%]

(v) Justify why the solution in part (b)(iv) will not work in the absence of damping.
[10%]
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3 Consider the system depicted in Fig. 1 where the measurement is of either 𝑥1(𝑡) or
𝑥2(𝑡) and the objective is to be able to control the position of the two masses.

𝑀1 𝑀2𝑢

𝑥2 𝑥1

Fig. 1

The two plants have transfer functions

𝑃1 : 𝑥1(𝑠) =
𝑘

𝑠2
(
𝑀1𝑀2𝑠2 + (𝑀1 + 𝑀2)𝑘

) 𝑢̄(𝑠)
and

𝑃2 : 𝑥2(𝑠) =
𝑀2𝑠

2 + 𝑘
𝑠2
(
𝑀1𝑀2𝑠2 + (𝑀1 + 𝑀2)𝑘

) 𝑢̄(𝑠)
where 𝑀1 = 𝑀2 = 1 and 𝑘 = 2.

(a) Consider first a feedback controller for 𝑃1 given by 𝑢(𝑡) = 𝐾1
(
𝑟 (𝑡) − 𝑥1(𝑡)

)
. Draw

the root-locus diagram for the resulting feedback system, thinking carefully about what
parts of the imaginary axis are on the root-locus, and find the smallest value of 𝐾1 for
which there is a pole with a real part strictly greater than zero. Does this value make sense
physically? [30%]

(b) Now consider a similar controller for 𝑃2: 𝑢(𝑡) = 𝐾2
(
𝑟 (𝑡) − 𝑥2(𝑡)

)
. Again, draw the

root-locus and infer that there is no value of 𝐾2 for which there is a pole with a real part
strictly greater than zero. [30%]

(c) Now consider a phase-lead compensator for 𝑃2: 𝑢̄(𝑠) = 𝐾2
𝑠 + 1
𝑠 + 2

(
𝑟 (𝑠) − 𝑥2(𝑠)

)
.

Sketch the form of the resulting root-locus diagram, assuming that there are no break-
away points on the real axis between 𝑠 = −1 and 𝑠 = −2, and infer that the feedback
system is now stable for all values of 𝐾2. [30%]
Estimate the value of 𝐾2 for which the time constant of the slowest closed loop pole is
minimised. [10%]

Hint: In order to differentiate with respect to 𝑠 you may wish to differentiate first with
respect to 𝑠2.
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4 Consider the inverted pendulum depicted in Fig. 2 and described by the equations

𝑚𝑔𝑙 sin 𝜃 = 𝑚𝑙2 ¥𝜃 + 𝑚 ¥𝑥𝑙 cos 𝜃

𝑦 = ¥𝑥 + 𝑧 ¥𝜃 cos 𝜃

}
(1)

where 𝑦 is the horizontal acceleration of the point at a distance 𝑧 along the rod from the
pivot.

𝑥

𝑙

𝑚

𝜃

Fig. 2

(a) Put equations (1) into state-space form, with states 𝜃, ¤𝜃, input 𝑢 = ¥𝑥 and output 𝑦. [30%]

(b) Linearise your equations about an arbitrary angle 𝜃𝑒, putting your answer in a
standard state-space form with matrices 𝐴, 𝐵, 𝐶 and 𝐷. [30%]

(c) Find the transfer function from 𝑢 to 𝑦 of your linearized model in the standard form
as a ratio of two polynomials. [30%]

(d) Without calculation, comment on the observability and controllability of the system
as 𝑧 → 0. [10%]
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Page 5 of 6



Version GV/4

THIS PAGE IS BLANK

Page 6 of 6


