Version RS/1

EGT2 ENGINEERING TRIPOS PART IIA

*** May 2024 2 to 3.40

Module 3F2

SYSTEMS AND CONTROL

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS

Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM CUED approved calculator allowed

Engineering Data Book

10 minutes reading time is allowed for this paper at the start of the exam.

You may not start to read the questions printed on the subsequent pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.

1 (a) bookwork

(b) (i) The i -th row of the controllability matrix is of the form

$$
[b_i - \lambda_i b_i \dots (-\lambda_i)^{n-1} b_i] = b_i [1 - \lambda_i \dots (-\lambda_i)^{n-1}]
$$

A first condition for full rank of the matrix is that $b_i \neq 0$ for each i. A second condition is that there is no repeated pole, that is, all the λ_i 's are different from each other. Under those two conditions, the n rows are independent from each other and the system is controllable.

(ii) The transfer function is $H(s) = c(sI - A)^{-1}b = b^T(s + A)^{-1}b = \sum_{i=1}^n b_i$ $rac{b_i^2}{s + \lambda_i}.$ The impulse response is therefore

$$
h(t) = \sum_{i=1}^{n} b_i^2 e^{-\lambda_i t}, \ t \ge 0
$$

which is a sum of positive terms. The impulse response is monotonically decreasing and the step response is monotonically increasing, very much like the response of a first-order lag.

(iii) In this case, the transfer function reduces to $\frac{b^T b}{s+1}$. A minimal realisation is given by the first-order system $\dot{z} = -z + \alpha u$, $y = \alpha z$, with $\alpha = ||b||$. (The rank of the observability matrix is one, hence $n - 1$ states are uncontrollable and the minimal realisation is of dimension one).

(c) (i) A symmetric matrix P with n distinct eigenvalues is diagonisable with an orthogonal change of coordinates, that is, there exists an orthogonal matrix U such that $P = U \Lambda U^T$. The change of variable $z = Ux$ transforms the diagonal system in (b) into $\dot{z} = -Pz + Ubu$, $y = (Ub)^T x$. Hence a relaxation system is controllable if $b_i \neq 0$ for all *i*.

(ii) When initialised away from equilibrium with no input, the solution of the system *relaxes* monotonically to the zero equilibrium, without any oscillation.

2 3 4 (a) bookwork.

(b) A force u(t) is applied to a mass-damper mechanical system with mass M and friction coefficient k. The position z(t) is measured. An observer is to be designed for its velocity.

(i)
$$
\dot{x}_1 = x_2
$$
,
\n $\dot{x}_2 = -\frac{k}{M}x_2 + \frac{1}{M}u$,
\n $y = x_1$.
\n(ii) $\dot{x}_1 = \hat{x}_2 + h_1(x_1 - \hat{x}_1)$,
\n $\dot{x}_2 = -\frac{k}{M}\hat{x}_2 + \frac{1}{M}u + h_2(x_1 - \hat{x}_1)$.
\n(iii) The transfer function is

$$
\hat{x}_1 = \frac{1}{(s+h_1)(s+\frac{k}{M})+h_2)}\frac{u}{M} + \frac{h_2 + h_1(s+\frac{k}{M})}{(s+h_1)(s+\frac{k}{M})+h_2)}z
$$

If the relationship $\frac{u}{M} = (s^2 + \frac{k}{M}s)$ holds, then the estimate \hat{x}_1 asymptotically converges to the position z provided that the error system is stable. This is ensured if $h_2 > 0$ and $h_1 + \frac{k}{M} > 0$.

(iv) Estimating both the position z and the bias b requires to observe the augmented system

$$
\dot{x}_1 = x_2,
$$

\n
$$
\dot{x}_2 = -\frac{k}{M}x_2 + \frac{1}{M}u,
$$

\n
$$
\dot{b} = 0
$$

\n
$$
y = x_1 + b
$$

\nwith the augmented observer $\dot{x}_1 = \hat{x}_2 + h_1(y - \hat{y}),$
\n
$$
\dot{x}_2 = -\frac{k}{M}\hat{x}_2 + \frac{1}{M}u + h_2(y - \hat{y})
$$

\n
$$
\dot{\hat{b}} = h_3(y - \hat{y})
$$

\n
$$
\hat{y} = \hat{x}_1 + \hat{b}
$$
 The gains of the observer must be chosen to ensure stability

 $\hat{y} = \hat{x}_1 + b$. The gains of the observer must be chosen to ensure stability of the error system.

(v) In the absence of damping, the augmented system is not observable. Indeed, for $u = 0$, one has $y = x_1 + b$, $\dot{y} = x_2$ and $\ddot{y} = 0$, hence the observability matrix has rank 2.

END OF PAPER

 $3)$ a) $5^2(5^2+4)$ Poles at 0,0, ± Z' RLa Lpiles σ n $= -98 + 3x90^{\circ}$ 2180° $\frac{d}{ds^{2}} \frac{\rho_{1}(s)}{s^{2}} = -s^{2} - [s^{2} + 4] = -7s^{2} - 4$ $\Rightarrow \frac{d}{ds}$ $\rho(s) = -2s(2s^2+4) = 0$ are $s=0, s= \pm\sqrt{2}$ $s:$ G_j = 2 (-2+4) = 1, = 2 Pole in RHP for KIZ Force pour on d disp of 24 overpowers 5 + 2 $\left(4\right)$ $s^{2}(s^{2}+4)$ $40-90+90$ => RL always on symp os ug

 $\mathsf{>}\mathsf{o}$ αx $\ddot{\mathcal{O}}$ $D - 8$
 $D + 90 - 3 \times 90 + 90 + 65$ $6 - 0$ -180 Hence existe Poles required poles لمحلح -52 axis 6μ ap asymptoces \mathbf{I} $5 - 3$ $X52/15$ $rac{2}{5}$

 $\ddot{\theta} = \frac{9}{\ell}$ Sin $\theta - \frac{u}{\ell}$ cos θ $77 + 951 + 2002$ C \geq $x_1 = \theta_1$, $26 = \theta_1$ $U + Z \dot{x}_1 \text{ (as } x_1$ $u + Zcos x (9 sin x - u cos x)$ $U(1 - \frac{z}{2}cos^2 x) + \frac{z}{2}$ $\frac{cos x}{2}sin 2\theta$ $\frac{dy}{2}x, y$ $\begin{array}{rcl}\n\delta f_1 &=& \frac{3}{2}cos \pi e + \frac{u}{e}sin \pi e \\
\delta \pi e &=& \frac{3}{2}cos \pi e + \frac{9}{2}sin \pi e sin \pi e = & \frac{9}{2}cos \pi e \\
\frac{3}{2}cos \pi e &=& \frac{3}{2}cos \pi e \end{array}$ $\frac{1}{\sin^{2}1} = \begin{bmatrix} 0 & \frac{1}{2}cos\pi e \\ 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 521 \\ 522 \end{bmatrix} +$ $+\begin{pmatrix} \cos\frac{3\pi e}{e}\\ 0 \end{pmatrix}$ $\begin{array}{rcl} \frac{\partial g}{\partial x}\Big|_{e} & \frac{z}{e} & \frac{1}{e} & \frac{1}{e} & \frac{1}{e} & \frac{1}{e} \\ \frac{1}{e} & \frac{1}{e} & \frac{1}{e} & \frac{1}{e} & \frac{1}{e} & \frac{1}{e} \\ \frac{1}{e} & \frac{1}{e} & \frac{1}{e} & \frac{1}{e} & \frac{1}{e} & \frac{1}{e} \end{array}$ $\frac{9z}{2}$ => $S_{23} = \left[\begin{array}{cc} 92 & 0\\ 2 & 0 \end{array}\right] = \left[\begin{array}{cc} 5x_1 \\ 5x_2 \end{array}\right] + \left[\begin{array}{cc} 1-z & 05x_1 \\ 2 & 0 \end{array}\right] = 0$

 $c)$ $(c/s) = c(s\pm -\beta)^{1}B + D$ $(5I-f)^{2} = [5 9/1 \cos x \cdot e]^{-1} = [5 \frac{-9/1 \cos x \cdot e}{5^{2} - \frac{9}{2} \cos x \cdot e}]$ = 66 = $\frac{9z}{2}$ x S x S in the $+\left(1-\frac{2}{e}cos^{2}x_{1e}\right)$ = $(1 - \frac{2}{2}cos^2 x_1e)5^2 + 92 sin x_1e 5 + 1-\frac{2}{e}cos^2 x_1e)$ $S^2 - \frac{9}{2}$ $d)$ (-(1) > 1 as 2-20, ie poles et + \sqrt{g} are cancelled and so redigation is not minimal & eider Loses controlleditien or observatives. A, B are independent of Z , So must be observation