EGT2
ENGINEERING TRIPOS PART IIA

Wednesday 3 May 20239.30 to 11.10

Module 3F3

STATISTICAL SIGNAL PROCESSING

Answer not more than three questions.
All questions carry the same number of marks.
The approximate percentage of marks allocated to each part of a question is indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS

Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM

CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of the exam.

You may not start to read the questions printed on the subsequent pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.

Version SJG/2

1 Consider the following Markov sequence X_{0}, X_{1}, \ldots which describes the population count of prey, where $0 \leq X_{k} \leq M$,

$$
P\left(X_{k+1}=j \mid X_{k}=i\right)= \begin{cases}i \theta_{1} & \text { if } j=i+1 \text { and } i<M \\ i \theta_{2} & \text { if } j=i-1 \text { and } i>0 \\ ? & \text { if } j=i \\ 0 & \text { otherwise }\end{cases}
$$

and M denotes the maximum population count. (The value in the $j=i$ row is intentionally left as '?'.)
(a) Find the transition probability matrix for this Markov chain.
(b) Find the range of values for θ_{1} and θ_{2} that ensures the transition probability matrix is valid.
(c) For $X_{0}=M$, find the probability mass functions (pmfs) $P\left(X_{1} \mid X_{0}=M\right)$ and $P\left(X_{2} \mid X_{0}=M\right)$.
(d) For $X_{0}=M$, find the values of θ_{2} and θ_{1} that maximise the probability of observing the following population count: $X_{1}=M-1, X_{2}=M-2, \ldots, X_{M-1}=1$.
(e) Find $P\left(X_{k}>X_{k-1}\right)$ in terms of the marginals $P\left(X_{k}=i\right)$. Hence, in a data set $X_{1}, X_{2}, \ldots, X_{T}$ of length T, find the expected number of transitions where the population increases.

Version SJG/2

2 Let $\left\{X_{n}\right\}$ be a wide sense stationary random process generated by the $\operatorname{AR}(2)$ model

$$
X_{n}=0.1 X_{n-1}+0.7 X_{n-2}+W_{n}
$$

where $\left\{W_{n}\right\}$ is an independent sequence with zero mean and variance 1 . Let $R_{X}(k)=$ $\mathbf{E}\left(X_{n} X_{n+k}\right)$, which is the autocorrelation function of $\left\{X_{n}\right\}$.
(a) Find $R_{X}(k)$ in terms of $R_{X}(k-1)$ and $R_{X}(k-2)$ for $k \geq 1$.
(b) Find $R_{X}(k) / R_{X}(0)$ for $k=1,2,3$ and hence sketch the autocorrelation function.
(c) A modeller suggests that the model

$$
Z_{n}=\alpha Z_{n-2}+W_{n}
$$

for $|\alpha|<1$ can approximate $R_{X}(k)$ well.
(i) Find $R_{Z}(k) / R_{Z}(0)$ and comment on the appropriateness of this model for data X_{1}, X_{2}, \ldots.
(ii) For an appropriately chosen α, justify why the model $Z_{n}=\alpha Z_{n-1}+W_{n}$ may be better suited to explain this data.

Version SJG/2

3 It is desired to fit a single sinusoid to noisy oscillating data measured from a distant galaxy. The model is posed as

$$
x_{n}=A \sin (\omega n)+B \cos (\omega n)+\epsilon_{n}
$$

where A and B are unknown coefficients, ω is a known frequency and ϵ_{n} is a random zero-mean noise process. n is an integer time index.
(a) Define the term joint probability density function $f_{A, B}(a, b)$ for the random variables (A, B) evaluated at $A=a$ and $B=b$, in terms of an event $\left(a_{l}<A \leq a_{u}, b_{l}<B \leq b_{u}\right)$. [10\%]
(b) Suppose the joint probability density function of (A, B) is circularly symmetric, which means that it may be expressed as

$$
f_{A, B}(a, b)=f\left(a^{2}+b^{2}\right)
$$

where $f()$ is a scalar function of $a^{2}+b^{2}$. Show that the cumulative distribution function (CDF) for $R=\sqrt{A^{2}+B^{2}}$ is given by

$$
F_{R}(r)=2 \pi \int_{0}^{r} \rho f\left(\rho^{2}\right) d \rho
$$

and hence show that the probability density function for R is

$$
f_{R}(r)=2 \pi r f\left(r^{2}\right)
$$

What is the distribution of the phase, $\tan ^{-1}(B / A)$?
(c) Suppose that A and B are independent, zero mean Gaussian random variables with variance equal to 1 . Determine and sketch the probability density functions for both $R=\sqrt{A^{2}+B^{2}}$ and $R^{2}=A^{2}+B^{2}$.
(d) Suppose there are N data measurements, $\mathbf{x}=\left[x_{0}, x_{1}, \ldots, x_{N-1}\right]$. An unbiased estimator $\hat{\theta}(\mathbf{x})=[\hat{A}, \hat{B}]$ is constructed for $\theta=[A, B]$. An estimate for R^{2} is now constructed as $\hat{R}^{2}=|\hat{\theta}(\mathbf{x})|^{2}=\hat{A}^{2}+\hat{B}^{2}$. Show that this estimator for R^{2} is biased since

$$
E\left[\hat{A}^{2}\right]=A^{2}+\operatorname{var}(\hat{A})
$$

Explain why the OLS estimator would give the smallest bias in R^{2} of any linear unbiased estimator under this scheme. What do you think would happen to this bias as $N \rightarrow \infty$?

Version SJG/2

4 A smoothing filter is to be used in enhancement of a signal pulse in additive noise. The filter has the following recursive form:

$$
x_{n}=\alpha x_{n-1}+u_{n}
$$

where $0<\alpha<1$ is a parameter of the filter, u_{n} is its input signal and x_{n} its output. Suppose that the input signal is a noisy rectangular pulse of the form:

$$
u_{n}=s_{n}+v_{n}
$$

where $\left\{v_{n}\right\}$ is zero-mean white noise having variance σ_{v}^{2} and, for $n=-\infty, \ldots,-1,0,1, \ldots, \infty$,

$$
s_{n}= \begin{cases}1, & n=0, \ldots, N-1 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Show that the impulse (unit pulse) response of the filter is

$$
h_{p}=\alpha^{p}, p \geq 0
$$

and sketch the output of the filter in response to the pulse s_{n} alone, i.e. setting $v_{n}=0$.
(b) Show that the power Signal-to-noise ratio (SNR) at the output of the filter at time index $n=N-1$ can be written as

$$
\frac{\left(1-\alpha^{N}\right)^{2}(1+\alpha)}{(1-\alpha) \sigma_{v}^{2}}
$$

Determine the value of α that gives the best output SNR when $N=2$ and comment on the result compared with the SNR of the unfiltered signal u_{n} at $n=N-1$.
(c) Now, set $N=10$. Determine, using approximate numerical optimisation if necessary, the value of α which gives best output SNR at $n=N-1$.
(d) Design the optimal matched filter for this problem and comment on its performance compared with the smoothing filter above for $N=2$ and $N=10$, using the optimal values of α computed in (b) and (c) above.

END OF PAPER

Version SJG/2

THIS PAGE IS BLANK

