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Module 3F3
SIGNAL AND PATTERN PROCESSING

Worked Solutions

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 (a) Show that the multiplication of two complex numbers takes 4 real
multiplications and 2 real additions. Hence give the exact operation count in real
multiplies and additions for the length-N DFT. Assume that all complex exponentials
have been pre-computed and stored ready for use. [20%]

Solution:
Take two complex numbers and multiply:
(a+jb)(c+ jd) = (ac—bd) + j(bc+ad)

Hence 4 real multiplies and 2 real adds (not three since the middle add refers just to
storage of the real and imaginary parts of the solution).

(b) Discuss the advantages of the FFT over the DFT for computation of the frequency
components of a data vector. Give three examples of engineering or scientific areas where
the FFT/ DFT are used in practice. [20%]

Solution:

FFT runs much faster for long data sequences: 5Nlog,(N) as compared to around SN2
for full DFT.

FFT is computed in-place (requires no extra memory store.

FFT/DFT are applied in speech or image coding, in astonomy for detecting planets/
exoplanets, in the analysis of building vibration modes, and numerous others...!

(c) Explain how the DFT X = [Xg X;... Xy_1]7 of a length-N signal vector x =

[xp X1 -.. xN,l}T may be written in matrix-vector form as:
X = Wx,
giving the form of the matrix W in terms of the column vectors
w, = [1 exp(—2jpn/N) exp(—4jpr/N) ... exp(—2(N—1)jpr/N)|T, p=0,1,..,N—1.

[20%]

Solution:

Version FIRST Page 2 of 10 (cont.



Please set a version number using \version

N1
G[) — Z g;l‘/l/np
n=0
80
&1
= {! wP wP ,
EN—1
= (W;J}Tg
where
1
w?
‘/Vp == ¥ ’2p
w(N_ Up

[Note that ./ denotes the Hermitian transpose, i.e. the complex conjugate of the

transpose].

(d) Show that

N, g=p,
Heow o ’ '
Wy Wp = '
0, otherwise,
where p and ¢ may take any values in the range 0,1, ..., N — L.

Hence find the matrix-vector form of the inverse DFT:
x = VX,
where again matrix V should be expressed in terms of the vectors w,. [40%]
Solution:
(e) Hence derive, by direct application of matrix algebra, the inverse DFT in the form:
X = HX
where the elements of H should be carefully defined. [30%]
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H
i
the complex conjugate of the transpose of vector my]

[Hint: consider the products m;'m; in the case where i = j and i % j. Note that mg{ is

Solution:

Now list all the & ps in a vector G to obtain:

“
Gy Wy
. & i W ]
=1 =] e
G 4
N1 W N1

Since the rows of W are orthogonal, i.e. wfj wg = 0 for p # ¢, and w;? wy, = N for all p,
we have:
WwH = N1
i.e.
Wl Lwh
N

Hence we immediately have an alternative (and simpler) derivation of the inverse DFT:

g=W 'G=(1/N) WG
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2 (a) The bilinear transform

s =
1+z71

can be used for the design of a digital filter from an analogue prototype filter.

Show that frequencies map from the analogue to digital domain according to the
relationship @ = tan(Q/2) where @ and Q should be carefully defined, including their

units. [20%]
Solution:

Let y(z) be the bilinear transform. Then set z = exp(j®). Now:

Vlexp(i) = om0
_ exp(—jQ/2)(exp(j/2) —exp(—j€2/2))
exp(—j/2)(exp(+j€/2) +exp(—jQ/2))
_ jsin(€/2)
~ cos(Q/2)
= jtan(Q/2)

which is purely imaginary, with the required frequency warp.

o is in rad.s~! and Q is normalised digital frequency in rad.sample !

(b) Discuss how the bilinear transform can be used to design digital filters from
analogue prototypes. Your discussion should include a definition of the type of filters
that can be designed, stability of the filter, and any distortions that may be introduced to
the frequency and impulse responses. [30%]

Solution:
The steps of the bilinear transform method are as follows:

1. Warp the digital critical (e.g. bandedge or "corner") frequencies ®; , in other words
compute the corresponding analogue critical frequencies @; = tan(€;/2).

2. Design an analogue filter which satisfies the resulting filter response specification.

3. Apply the bilinear transform to the s-domain transfer function of the analogue filter to
generate the required z-domain transfer function.

Can design IIR filters with this method from analogue prototype. Distortions are
introduced in the non-linear frequency warping - will distort phases even in sections with
constant amplitude response. The impulse response is distorted in an unpredictable way.
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To get one type of filter from another, use transformation functions in the analogue domain
(also possible in the digital domain, but not covered in this course):

Lowpass to Lowpass: Set s’ = s/, to give lowpass with cutoff at @,

2
Lowpass to Highpass: s' = % to give bandpass with lower cutoff at w;, upper cutoff
at wy

2

Lowpass to Bandpass: s = ;((ju%gl”) to give bandpass with lower cutoff at @;, upper
cutoff at wy,
Lowpass to Bandstop: s' = M to give bandstop with lower cutoff at @;, upper cutoff

S+ 0y @y
at wy

[One or two of the above examples would suffice]

2
(c) Explain why the substitution s = ;T(#la% can be used to take a low-pass analogue
—
prototype and obtain a bandpass filter with lower cutoff at @;, upper cutoff at w,,. [ 20%]
Solution:

Answer: this is a low-pass to bandpass transformation with lower and upper cut-offs at
®; and w,, respectively. Taking s = jo we get the equivalent frequency substitution:

02 — o0y

0 —=
o(w) — o)

In particular, taking @ = 0, we find that this corresponds to @' = o in the original
prototype filter, and so does @ = oo. Hence frequencies O and o are heavily attentuated
in the transformed filter. @; corresponds to @’ = —1 in the original filter and and @, to
o' = +1, which means that these two values define corner (typically 3dB) frequencies in
the new filter. Finally, the frequency @’ = 0 corresponds to @ = /@ @; (the ‘geometric
mean’) in the bandpass design, a frequency that lies in the passband between @; and ®,,
hence the bandpass region is between ®w; and ®,.

(d) A digital band-pass filter is required with sample rate of 16kHz. The lower cut-off
frequency should be 2kHz and the upper cut-off frequency should be 6kHz. A low-pass
analogue prototype filter can be used with transfer function

1
(1+s)

Use this analogue prototype and the bilinear transform to obtain the transfer function of

H(s)=

the corresponding band-pass fiilter and comment on the form of the result. Sketch its
frequency magnitude response, paying particular attention to the shape of the passband
and any 3dB points. What is the filter’s gain at OkHz, 2kHz, 4kHz, 6kHz and 8kHz? [30%]
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Answer:

First warp the cut-off frequencies from normalised digital ‘Q’ to analogue ‘®’:

Q1 = 2000 x 270/16000 — @y = tan(Q /2) = 0.4142rad.s !

Q, = 6000 x 271/16000 — @, = tan(Qy/2) = 2.4142rad.s !

Then, using these warped values, perform the low-pass to bandpass transformation from
part a):

2
nCETYRE
1
24w 0 L1
s(on—oy)
_ s(w) — @)
s + oy @y + s(a) — o)

Now, apply biliinear transform,
-1

SZZU(Z)Zzii;z:T;

_ 17!
1+Z*1

_ (@~ @) (1-22)
1+ 0y — 0 + 00 + (2010, —2)z7 1+ (1+ 00, — (0 — 07))z72
=(1-277)/2

i.e. in this special case we have ended up with an FIR filter! This was because of the
symmetry of the design across frequency.

By design, 2kHz and 6kHz must be at -3dB (corner frequencies from the analogue filter
prototype). 4kHz is unity gain, since frequency zero (gain 1 in the analogue prototype)
maps to \/(a)zcol) = lrad.s~! under the low-pass to band-pass transformation. The
corresponding digital frequency is then 2tan ! (1) = 7/2, which is a quarter of the sample
frequency, i.e. 4kHz. 0 and 8kHz have zero gain since the two zeros sit on the unit circle
at these frequencies.

Sketch would look like:
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04 05 06
Normalized Frequency (c rad/sample)

3 (a) In some applications it is required to estimate a signal observed in noise, and
in other cases it is required to defect the presence or otherwise of a signal. Explain the
circumstances in which a Wiener filter could be applied, and those in which a matched
could be the appropriate method, stating the technical assumptions underlying each. Give
a practical application of each type of procedure. [30%]

Solution:

The Wiener filter applies to estimation of a stationary random signal in stationary noise.
the cross- and auto-correlation functions of the processes must be specified. Example:
noise reduction in mobile telephony (using short-term stationary assumptions).

The matched filter detects the presence of a known deterministic signal in random
stationary noise. Example: detection of return from a sonar pulse.

(b) In a neuroscience experiment an auditory stimulus is presented to a student, and
the neural response is measured through an electrode taped to the head. The measured
electrical response signal may be expressed as a known, deterministic signal p; observed

in noise, as follows:
Xy = apy + ey,

where a is an unknown random variable with zero mean and variance 0'a2, and e is a zero
mean white noise with variance 62. {e;} is assumed uncorrelated with a for all times 7,

Determine the mean value of x;, i; = E [x;], and the autocorrelation function ryx|[t,t] =
E[xt,x1,|. Explain with justification whether the process x; is wide-sense stationary. [30%]

Solution:

t = Elalp: +Ele;] =0
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rxx[t1,t2] = El(aps; +er)(aps, +er, )
= E[az}Ptlptz + Eler, er,] 4 Eaer, | pr, + Eaer, | pr,]| = 3pt1pt2 + 0625[f2 —1]4+0

[last zero since a and e are zero-mean and uncorrelated].

This is non-stationary in general since ryx depends on both #; and #, (and not on just their

difference).

(c) Itisrequired to estimate the unknown amplitude @ when x; is observed over a fixed
time interval t =0, 1, ..., T — 1 by filtering the data as follows:

T-1
q= Z b,x,
t=0

where b; are the filter coefficients.

The accuracy of estimation of a is to be assessed using the mean-squared error criterion:

J=E[(a—a)3.
Show that J can be expressed as:
—17-1
J=0;-20; Z bi+0¢ Z bi + 04 Z Y. buybeypi iy
0[2 0

Solution:
J=El(a—a)% = E[(a—x"h)?] = E[a®| + hT E[xx]Th — 2E[ax"|h
= 62 +h"Rxh —2E[a)’p’h

where the (i, j)th element of Ry is ryx|i, j] and in the last term we again used that a and
e were zero mean and uncorrelated.

Expanding this out using ryx from above, we have:

J=02+hTRsh

= oﬁ—l—zz....
171 '

o; 204 Z b+ o7 Z b} + 02 Z Z by by Py Py
=0 l‘l—Ol‘2

[40%]
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4 SOLUTION

(a) The likelihood is
p(y1%.0,6%) = [T pOnbin . 6%) = [T 5173 xp{ 5 0 — )’}
i i (2mo2)1/2 202
Equivalently we maximise
1 1
logp(ylx.a,0%) = ¥~ 108(2m0%) — 525 (3 — axn)’

Taking derivatives w.r.t. @ and setting to zero gives

1
n

amr, = (;Z:‘,l )’nxn> / (njzvll X%)

which is the scalar version of the “normal equations”. Taking derivatives w.r.t. o2 and

Solving for a gives

setting to zero we get:

N 1 5
02 T aga Lln )T = 0
No? = Z’(yn—axn)2
n
2 1Y 2
oML = N Z (yn — axn)

n=1

which is the average of the residual errors.

(b) The maximum of the likelihood for this model will be higher than for the model in
part (a) since this more complex model has more parameters to fit the data. The value of
62 will be lower than for part (a) since again the model can fit the data better and so the

average residuals will be smaller (see solution for G%,IL in part (a)).

(¢) Laplacian noise has heavier tails than Gaussian noise, so in general using such a
model might be a good idea if we expect to have outliers—points where the actual y
values are far from the linear prediction. Because this model can better handle outliers it
is considered more robust than the model in part (a).

END OF PAPER
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