3F3: STATISTICAL SIGNAL PROCESSING

S.S. Singh, Easter 2021

Question 1. Part (a) Since $\mathbb{E}\left\{V_iV_j\right\}=0$ when $i \neq j$,

$$
\mathbb{E}\left\{X_n^2\right\} = \mathbb{E}\left\{ \left(\sum_{j=0}^t V_{n-j}^2\right) \right\} + \text{cross-terms} = (t+1)\,\sigma_v^2.
$$

Similarly

$$
\mathbb{E}\left\{X_n X_{n+1}\right\} = t\sigma_v^2
$$

because there are t V_i -terms in common. Generalising

$$
\mathbb{E}\left\{X_n X_{n+k}\right\} = (t+1-k)\sigma_v^2
$$

for $0 \leq k \leq t$ and is zero for $k > t$.

Part (b)

Check all the conditions for WSS are satisfied. Firstly note that $sin(2\pi nu)$ = $\sin(2\pi n(u+1/n))$ and thus

$$
\mathbb{E}\left\{\sin\left(2\pi nU\right)\right\} = \int_0^1 \sin\left(2\pi n u\right) du = 0
$$

since sine is integrated over n full periods. $\mathbb{E}\left\{X_n^2\right\} < \infty$ and for $n > m$

$$
2\mathbb{E}\left\{X_m X_n\right\} = \mathbb{E}\left\{\sin\left(2\pi mU\right)\sin\left(2\pi nU\right)\right\}
$$

$$
= \mathbb{E}\left\{\cos\left(2\pi(n-m)U\right)\right\} - \mathbb{E}\left\{\cos\left(2\pi(n+m)U\right)\right\}
$$

which is zero since integrals are computing the area of the cosines over full periods.

Part (c-i)

 $\mathbb{E}(X_n) = b_1 + b_2n + \mathbb{E}(W_n) = b_1 + b_2n$ so mean is not constant.

$$
\mathbb{E}\left\{X_n X_m\right\} = (b_1 + b_2 n)(b_1 + b_2 m) + \mathbb{E}\left\{W_n W_m\right\} \n+ \mathbb{E}\left\{(b_1 + b_2 n) W_m\right\} + \mathbb{E}\left\{W_n (b_1 + b_2 m)\right\} \n= (b_1 + b_2 n)(b_1 + b_2 m) + R_W (m - n)
$$

for $m > n$ and $\mathbb{E}\{X_n^2\} = (b_1 + b_2 n)^2 + \sigma_w^2$ where $\sigma_w^2 = \mathbb{E}\{W_n^2\}.$

Thus we also see that $\mathbb{E} \{X_n X_m\} \neq \mathbb{E} \{X_0 X_{m-n}\}$ and so not WSS. Part (c-ii)

$$
Y_n = b_2 + W_n - W_{n-1} = b_2 + \bar{W}_n.
$$

\n
$$
\mathbb{E}(Y_n) = b_2 \text{ so constant mean. } \mathbb{E}\{Y_n^2\} = b_2^2 + \mathbb{E}\{\bar{W}_n^2\} + 0 \text{ and}
$$

\n
$$
\mathbb{E}\{\bar{W}_n\} = \mathbb{E}\{W_n^2 + W_{n-1}^2 - 2W_nW_{n-1}\} = 2R_W(0) - 2R_W(1)
$$

where $R_W(k) = \mathbb{E}\left\{W_n W_{n+k}\right\}$. For $k > n$

$$
\mathbb{E}\left\{Y_n Y_{n+k}\right\} = \mathbb{E}\left\{\left(b_2 + \bar{W}_n\right)\left(b_2 + \bar{W}_{n+k}\right)\right\}
$$

$$
= b_2^2 + \mathbb{E}\left\{\bar{W}_n \bar{W}_{n+k}\right\}
$$

and

$$
\mathbb{E}\left\{\bar{W}_n\bar{W}_{n+k}\right\} = \mathbb{E}\left\{(W_n - W_{n-1})(W_{n+k} - W_{n+k-1})\right\}
$$

= $R_W(k) + R_W(k) - R_W(k-1) - R_W(k+1).$

Thus Y_n has constant mean, finite variance and $\mathbb{E}\left\{Y_nY_{n+k}\right\} = \mathbb{E}\left\{Y_0Y_k\right\}$ and satisfies the conditions for being WSS.

Part (c-iii)

$$
\mathbb{E}\left\{\exp(iY_1t_1)\cdots\exp(iY_kt_k)\right\} = \exp\left(ib_2(t_1+\ldots+t_k)\right) \times \mathbb{E}\left\{\exp\left(i(W_1-W_0)t_1\right)\cdots\exp\left(i(W_k-W_{k-1})t_k\right)\right\}
$$

and using the idependence of W_k we get

$$
\mathbb{E}\left\{\exp\left(i(W_1 - W_0)t_1\right) \cdots \exp\left(i(W_k - W_{k-1})t_k\right)\right\} \n= \mathbb{E}\left\{\exp\left(i(-W_0)t_1\right) \exp\left(i(t_1 - t_2)W_1\right) \cdots \exp\left(i(t_{k-1} - t_k)W_{k-1}\right) \exp\left(iW_kt_k\right)\right\} \n= \phi(-t_1)\phi(t_1 - t_2) \cdots \phi(t_{k-1} - t_k)\phi(t_k)
$$

The characteristic function of (Y_1, \ldots, Y_k) is thus the same as that of (Y_m, \ldots, Y_{m+k-1}) which implies the two random vectors have the same joint probability density function and thus is strictly stationary.

Part (c-iv) Subtract the straight line trend from X_n to get the noise variables only. Now compute the autocorrelation function. Independent random variables have an autocorrelation function that is zero for any non-zero lag. We can see from the figure that the noise variables stay below or above the trend for a length of time which indicates the noise is correlated, i.e. $\mathbb{E}\left\{W_n W_{n+1}\right\} > 0$.

Examiner's comments for Q1: Parts (a) , (b) , (c) - (i) were answered well. For part (c)-(ii), the method of the crib avoids lengthy calculations by treating $W_n - W_{n-1}$ as a new random variable. For part (c)-(iii), quite a few wrongly assumed Y_1, \ldots, Y_k were independent when finding the characteristic function. For part (c)-(iv), surprisingly many did not immediately notice that the noise variables must be correlated since they stay below or above the straight line fit in succession.

Question 2.

Part (a). To show it is a Markov chain, we need to show

$$
Pr(X_n = i_n | X_0 = i_0, \dots, X_{n-1} = i_{n-1}) = Pr(X_n = i_n | X_{n-1} = i_{n-1})
$$

which is true as the questions states current bet outcome independent of previous outcomes.

The transition probabilities are $p_{0,0} = 1$, $p_{i,i+1} = \alpha$, $p_{i,i-1} = 1 - \alpha$. All others $p_{i,j}$ (not listed here) are zero.

Sketch of transition diagram is obvious.

[Marks 15%] Part (b)-i. Let E_m denote the event that the player reaches their target wealth M when starting from m. There are many outcomes $o \in E_m$, for example winning every bet until target wealth is reached

$$
o = (i_1, \dots, i_{M-m}) = (m+1, \dots, M)
$$

or loosing the first and then winning every other one after that,

$$
o = (m-1, m, m+1, \ldots, M)
$$

and so on.

Part (b)-ii. Let $q_m = \Pr(E_m)$, for $m = 0, 1, ..., M$. Clearly $q_0 = 0$, $q_M = 1$. For other q_m ,

(0.1)
$$
q_m = \alpha q_{m+1} + (1 - \alpha) q_{m-1}.
$$

This follows since the result of the first bet is either a win (with probability α) or a loss.

For a more advanced explanation: for any outcome $o = (i_1, i_2, ...) \in E_m$ either $i_1 = m - 1$ or $i_1 = m + 1$. Thus

$$
Pr(E_m) = Pr(E_m, i_1 = m + 1) + Pr(E_m, i_1 = m - 1)
$$

and $Pr(E_m, i_1 = m + 1) = Pr(i_1 = m + 1) \times Pr(E_m | i_1 = m + 1) = \alpha q_{m+1}$. [Marks 15%] Part (c). Rearranging [\(0.1\)](#page-2-0) gives

$$
(1 - \alpha)(q_m - q_{m-1}) = \alpha(q_{m+1} - q_m)
$$

$$
q_{m+1} - q_m = \frac{1 - \alpha}{\alpha}(q_m - q_{m-1})
$$

and iterating gives

$$
q_m - q_{m-1} = \left(\frac{1-\alpha}{\alpha}\right)^{m-1} (q_1 - q_0).
$$

[Marks 15%]

Part (d). To solve for q_1 , first note $q_0 = 0$ and sum the derived relationship to get

$$
q_M - q_{M-1} + \dots + q_2 - q_1 = \left(\left(\frac{1-\alpha}{\alpha} \right)^{M-1} + \dots + \left(\frac{1-\alpha}{\alpha} \right) \right) q_1
$$

$$
1 - q_1 = \left(\left(\frac{1-\alpha}{\alpha} \right)^{M-1} + \dots + \left(\frac{1-\alpha}{\alpha} \right) \right) q_1
$$

$$
1 - q_1 = r(1 + \dots + r^{M-2})q_1
$$

$$
q_1 = \frac{1}{1 + \dots + r^{M-1}}
$$

[Marks 25%]

Part (e-i).

 $E\{X\} = E\{ZU + Y\} = E\{ZU\} + E\{Y\} = E\{Z\}E\{U\} + E\{Y\}$ by linearity and the independence of Z and U. $\mathbb{E}\{X\} = \mathbb{E}\{Y\}.$

$$
\mathbb{E}\left\{Z\right\} = \int_{1}^{2} z \times \frac{3}{7} z^2 dz = \frac{3}{7} \left[\frac{z^4}{4}\right]_{1}^{2} = \frac{45}{28}.
$$

For $\mathbb{E}\left\{Y\right\}$ first compute

$$
\mathbb{E}\left\{Y|Z=z\right\}=1/z.
$$

Thus

$$
\mathbb{E}\left\{Y\right\} = \int_{1}^{2} \mathbb{E}\left\{Y|Z=z\right\} \times \frac{3}{7}z^{2}dz = \frac{3}{7}\left[\frac{z^{2}}{2}\right]_{1}^{2} = \frac{9}{14}.
$$

Now compute the second moments, $\mathbb{E}\left\{X^2\right\}$, $\mathbb{E}\left\{Y^2\right\}$, $\mathbb{E}\left\{Z^2\right\}$.

The term $\mathbb{E}\left\{X^2\right\}$ is

$$
\mathbb{E}\left\{X^2\right\} = \mathbb{E}\left\{Z^2U^2\right\} + \mathbb{E}\left\{Y^2\right\} = \mathbb{E}\left\{Z^2\right\} + \mathbb{E}\left\{Y^2\right\}
$$

since $\mathbb{E}\left\{ZUY\right\} = \mathbb{E}\left\{U\right\}\mathbb{E}\left\{ZY\right\} = 0$, $\mathbb{E}\left\{U^2\right\} = 1$ and $\mathbb{E}\left\{Z^2U^2\right\} = \mathbb{E}\left\{Z^2\right\}\mathbb{E}\left\{U^2\right\}$ by
independence of U and Z .

 $\mathbb{E}\left\{Y^2|Z=z\right\} = 1/z^2 \text{ thus } \mathbb{E}\left\{Y^2\right\} = 3/7.$

$$
\mathbb{E}\left\{Z^2\right\} = \int_1^2 z^2 \times \frac{3}{7} z^2 dz = \frac{3}{7} \left[\frac{z^5}{5}\right]_1^2 = \frac{3}{7} \times \frac{31}{5}.
$$

Part (e-ii). Need to calculate

 $\mathbb{E}\left\{XY\right\}, \mathbb{E}\left\{XZ\right\}, \mathbb{E}\left\{YZ\right\}$ and assemble in into

$$
\begin{bmatrix}\n\mathbb{E}\left\{X^{2}\right\} & \mathbb{E}\left\{XY\right\} & \mathbb{E}\left\{XZ\right\} \\
\mathbb{E}\left\{XY\right\} & \mathbb{E}\left\{Y^{2}\right\} & \mathbb{E}\left\{YZ\right\} \\
\mathbb{E}\left\{XY\right\} & \mathbb{E}\left\{YZ\right\} & \mathbb{E}\left\{Z^{2}\right\}\n\end{bmatrix} - \begin{bmatrix}\n\frac{9}{14} \\
\frac{9}{14} \\
\frac{45}{14} \\
\frac{45}{14}
$$

$$
\mathbb{E}\left\{XZ\right\} = \mathbb{E}\left\{YZ\right\} = 1.
$$

Examiner's comments for Q2: Part (a) answered well by most. Part $(b)-(i)$, listing outcomes in E_m was a challenge for some as they did not see an outcome was a sequence of plays that result in attaining target wealth M . Part (c) was a challenge for most and many incomplete answers given for part (d), though the steps involved were correct. Part (e) was done well in the main.

Examiner's comments for Q3: Part (a): This part answered well in general. Some students forgot the conditions for mean ergodicity. Part (b): Well answered by most. Some very careless solutions. Part (c): Most knew the principle of solution but there were very many slips and inserting of wrong r_{xy} values etc. Part (d): Very few full solutions, most candidates not completing any analysis around the normal pdf

Examiner's comments for Q4: Part (a): Very well answered though some careless slips in the differentiation. Part (c): Lots of really good answers to this with full discussion of the three cases. Part (d): Generally quite well done but lots of errors in the integration by substitution. Many very good answers to this [second] part. Candidates clearly familiar with heavy tailed models.

3F3 2021 worked solutions qqs. 3-4

3 ca , Contol. $C_{xx}[m] = R_{xx}[m] - \mu^2$ $1 - (2p - 1)^2 = 4p^2 + 4p$
= 4p(-p+1),
- 0 for m = 0 $=$ (Now, since CXX[m] mm $\begin{array}{c}\n\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet\n\end{array}$ we have mean excedic

3(b) With p = 0.5 Rxx [0] = 1 Rxx [m $*0$] = 0 RxK $\left[m\right] = S_m$ $\frac{5x-3}{6}$ is WSJ, hence $\frac{54-3}{6}$ is WJJ $RyxLwJ = E[(0.8X_{n}-06X_{n+1} + V_{n})X_{n+m}]$ = 08 Rxx[m] - 0.6 Rxx[m+1] + E EVyXu+4] $= 0.85m - 0.65m + 1$ Since $R + x \le 4 \times 2 6.8$ $E[V_n] \approx 0$ and $\frac{1}{2}$ V, x independent. -0.6 R_{47} C_{47} = $E[Y_{n} (0.8X_{n+m}-0.6X_{n-1+m}+V_{nn})]$ = 0.8 Ryx [m] - 0.6 Ryx [m F] + E[Yn Vn+m]
= 0.8 (0.8 Sm - 0.6 Sm+)
= artest Sm - 8.7% Sm+, #20038676462 + Ryv[m]
= artest Sm - 8.7% Sm+, #20038676462 + Ryv[m] N_{∞} , $R_{\gamma V}$ Γ_{ω} = E $(\& n + -0.6X_{n-1} + V_n)V_{n+m}$
= $R_{\nu V}$ Γ_{ω} = σ_{ν} \sim S_{ω} 50 Ryy Em] = 1.16m - 0.48 8 m+1 -0.48 8m-1 $-048b$ $m - \theta$ $1 - 648$

365
\n
$$
B_{1} = E[(\lambda_{1} - \lambda_{1})^{2}]
$$
\n
$$
= E[(\alpha_{1} + \beta_{1} - \lambda_{1})^{2}]
$$
\n
$$
= \alpha_{1}^{2}E[Y_{1}^{2}] + \beta_{1}^{2}E[Y_{1}^{2}] - E[X_{1}^{2}]
$$
\n
$$
+ 2 \alpha_{1} \beta_{1}E[Y_{1}Y_{1} - 2 \beta_{1}E[Y_{1}X_{1} -
$$

 $3d$ (Assemme error con be modelled as $MSE = 1.1(d^2 + B^2) + 1 - 2dG_{X0.48} - 2dX0.8$ $= 0.5633$ Assume we det a décision boundag at 0:
So fortability et error when $X_n = 1$ (or -1) $N(10, 0.5633) dx = 1-\oint_{0}^{1}(\frac{1}{\sqrt{0.5633}})$ \overline{z} $= 0.0914$ So error is less than 10%, not load.

 \bigoplus 4 $\rho(4_f|4_f) = \frac{\sqrt{4f}}{\sqrt{2f}}e^{\frac{-4f}{2}x^2}$ (a) Max. likelihood: $\frac{dP(Y_{t-1}U_{t})}{dU_{t}}=\frac{1}{\sqrt{2\pi}}\sum_{q=1}^{\infty}\frac{V_{q}}{q}e^{\frac{-U_{r}}{2}}\frac{1}{\sqrt{2}}\sum_{q=1}^{N-1}V_{q}^{2}}$ $rac{241}{s}}$ $\frac{v}{\sqrt{u_t}\frac{v_t^2}{1}} = \frac{u_t^2}{1}$ $\frac{\partial r}{\partial t}$ $U_t = \frac{1}{\gamma_t}$ M_t

 \circledS 4. (9) Contd. Shotch; U_{t} $\frac{1}{k}$ MC Estimate. (b) This will not be useful
in itself as there is very little
information about the precision

v (7) Posterior ρ (u+|Y+) $\not\leq p(4+|u_{t}) \rho(u_{t})$ $\frac{-\gamma_{r}^{2}u_{r}}{\sqrt{u_{r}}e^{\frac{-\lambda u_{r}}{\lambda_{r}}}}$ $\frac{1}{\sqrt{2\pi}}$ $-U + (Yt^2 + \lambda)$ $\sqrt{4}t$ e The MAP estimate $MAP =$ $\frac{1}{4^{2}+2\lambda}$ by same calculus as before.

 $\overline{1}$ $\frac{1}{2}$ $\sqrt{\frac{2}{L}+2\lambda}$ MAP ML 4 small rel. 2: Estimate is concentrated on 2), the prior. It wedin.
Precision is shownk down faced the prior Yt Large:
Precision is at the ML estimate.

 \bigcup 癿. $\int_{0}^{\infty} p(y_{+}|u_{-}) p(u_{+}) du_{+}$ (d) $\frac{1}{\sqrt{1-\frac{1}{2}}}\frac{1}{\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\left(\frac{1}{2}-\frac{1}{2}\right)}$ $p(\Psi_t)$ $-4t(4t^{2}+1)$ $\sqrt{4\pi}$ e \equiv dU_{f} $V = U_t (45\frac{2}{2} + \lambda)$ Let $\frac{y_{t}^{2}}{2}$ dV ⊝ہ e (γ_{t}) $\overline{\mathbf{r}}$ O $\left(\frac{1}{1-\frac{2}{2}+\lambda}\right)^{3/2}$ $3/2$ \equiv C

Aetch Jymeretric 9 bell-fleeped curve Alo heaversymmetric, b wt unch lten Garsian tai Hence ingotelling et values tetter Seearse 43 decays $2-15/20^{2}$ less rapidly than

رب