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WORKED SOLUTIONS
Assessors’ comments:

Q1: Markov chains

Part a answered well except the proof of the Markov property. Part b surprisingly not.
Some candidates could not compute the characteristic function of Yn, which is the sum
of independent n random variables variables. Part c(i). Surprisingly some candidates
failed to use the Gaussian approximation from part b to calculate the probability of wealth
being positive after n bets. Part c(ii). Most understood that the approximation from c(i)
overestimates the probability since it allows the gambler to go into debt.

Q2: AR models/ power spectrum

Parts a and b. The power spectral density is most straightforwardly calculated via the z
transform of the impulse response. Taking the DTFT of the autocorelation function directly
is more lengthy, especially for the AR(2) process. Parts c and d very well done. Part e was
a challenge for many. Part f was recognized as straightforward and the power spectrum of
X could be calculated using the parts a+e or by calculating the power spectrum of Y and
then using parts c+d.

Q3: Matched filtering

This question was quite well answered, although many candidates were unable to provide
full detail in their solutions. The precise definition of white noise was not well known, but
reasonable attempts were not penalised heavily. The sketch of filter output in response to
just signal was poorly done by many âĂŞ showing that not many students have a good
insight into how a FIR filter works. The matched filter was well known, but many made
simple errors in calculating the SNRs âĂŞ e.g. not remembering to square the maximum
output value.

Q4: Maximum likelihood/ Bayes

This question was answered pleasingly well. Many spotted the non-standard form of the
likelihood estimates in the first part and were able to comment successfully on the likely
bias of the solutions. ML and Bayesian estimates were very well answered in part (b),
although surprisingly few people got the normalising constant for the posterior, even given
the appropriate gamma integral in the hint. Good sketching of the densities in the final part.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
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10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 (a) Let f (i) be a probability mass function (pmf), i.e. f (i)≥ 0 and ∑
∞
−∞ f (i) = 1.

Let

Xk = Xk−1 +Wk, for k = 1,2, . . .

where X0 = i0 and W1,W2, . . . are independent and identically distributed random variables
and each Wk has pmf f .

(i) Find p(Xk+1 = j | Xk = i); [10%]

(ii) Find p(X1 = i1, . . . ,Xn = in); [10%]

(iii) Hence show that X1,X2, . . . is a Markov chain. [20%]

(b) Let f (−1) = 1/2, f (1) = 1/2 (thus f (i) = 0 for all other values of i) and let

Yn =

(
n

∑
j=1

W j

)
/
√

n

(i) By computing the characteristic function of Yn, which is E {exp(iYnt)}, show
that Yn tends to a Gaussian random variable as n→ ∞. (Hint: you may use the fact
that cos(t/

√
n)n→ exp(−t2/2) as n tends to infinity.) [25%]

(c) A gambler, with initial wealth R, wagers one pound for each bet and the probability
of winning the bet is 0.5. Their wealth increases by 1 if the bet is won; otherwise it
decreases by 1.

(i) The gambler is allowed to make n successive bets, potentially going into debt.
Find an approximation for Pr(Xn > 0). [25%]

(ii) In a change of the rules, the gambler is allowed to make n successive bets
but must stop as soon as their wealth is zero. Give the Markov chain that describes
the change in wealth of the gambler and comment on how well the answer in (c)(i)
approximates the probability that the gambler’s wealth is positive. [10%]

SOLUTION:

p(Xk+1 = j | Xk = i) = p(Xk +Wk+1 = j | Xk = i)

= p(Wk+1 = j− i)

= f ( j− i).
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p(X1 = i1, . . . ,Xn = in)

= p(W1 = i1− i0, . . . ,Wn = in− in−1)

= p(W1 = i1− i0) · · · p(Wn = in− in−1)

= f (i1− i0) · · · f (in− in−1)

Proof of Markov property by showing

p(Xn = in | X1 = i1, . . . ,Xn−1 = in−1) = p(Xn = in | Xn−1 = in−1).

To do so, use previous two derived results as follows:

p(Xn = in | X1 = i1, . . . ,Xn−1 = in−1)

=
p(X1 = i1, . . . ,Xn = in)

p(X1 = i1, . . . ,Xn−1 = in−1)

= f (in− in−1)

= p(Xn = in | Xn−1 = in−1)

When f (−1) = 0.5 and f (1) = 0.5 then given Xk = ik,

Xk+1 =

ik−1 w.p 0.5

ik +1 w.p 0.5

where w.p. abbreviates with probability.

E (exp(iYnt)) = E
(
exp(iW1t/

√
n) · · ·exp(iWnt/

√
n)
)

= E
(
exp(iW1t/

√
n)
)
· · ·E

(
exp(iWnt/

√
n)
)

where the second line follows since Wk are independent.

E
(
exp(iW1t/

√
n)
)
=

1
2

exp(it/
√

n)+
1
2

exp(−it/
√

n)

= cos(t/
√

n).

Thus

E (exp(iYnt)) = cos(t/
√

n)n→ exp(−t2

2
)
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which is the characteristic function of a zero mean unit variance Gaussian random
variable.

Note that Xn = R+
√

nYn.Thus

Pr
(
R+
√

nYn > 0
)
= Pr

(
Yn >−R/

√
n
)

≈
∫

∞

−R/
√

n

1√
2π

exp(−0.5x2)dx

The new Markov chain X ′0,X
′
1, . . . ,Xn’ that describes the change in wealth when gambler

must stop betting once their wealth is zero is: given X ′k = ik,

X ′k+1 =


ik if ik = 0.

ik +1 w.p. 0.5

ik−1 w.p. 0.5

The event
{

X ′n > 0
}

is a strict subset of the event {Xn > 0} since Xn permits the wealth
to dip below zero. So the solution to the previous part over estimates the probability.
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2 Consider the following autoregressive process

Xn +a1Xn−1 +a2Xn−2 = σWn

where {Wn} is a zero-mean white noise process with variance 1 and σ a positive constant.

(a) Find the power spectrum of {Xn}. [10%]

(b) Let {Vn} be the moving average process

Vn = b0En +b1En−1

where {En} is a zero-mean white noise process with variance 1. Find the power spectrum
of {Vn}. [10%]

(c) Let Yn be the noisy measurement of Xn given by

Yn = Xn +Vn.

Assume the noise sequences {Wn} and {En} are independent. Find the power spectrum
of {Yn}. [15%]

(d) Based on measurements of {Vn}, the power spectrum of {Vn} is estimated to be

ŜV (ω) = 2+2cosω

Show that valid estimates of b0 and b1 are b0 = b1 = 1 and b0 = b1 =−1. [25%]

(e) Show that [
RXX [0] RXX [1]
RXX [1] RXX [0]

][
a1
a2

]
= −

[
RXX [1]
RXX [2]

]
,

RXX [0]+a1RXX [1]+a2RXX [2]=σ
2.

[30%]

(f) Based on measurements of Yn as in (c), the following estimates are made for its
autocorrelation function:

R̂YY [0] = 4.74, R̂YY [1] = 0.54, R̂YY [2] = 1.41

Use these values to estimate the power spectrum of {Xn}. [10%]
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SOLUTION:

The power spectrum of Xn:

A(z) = 1+a1z−1 +a2z−2, SX (e
jω) = σ

2|A(e jω)|−2

The power spectrum of Vn:

B(z) = b0 +b1z−1, SV (e
jω) = |B(e jω)|2

The power spectrum of Yn:

E {ynyn+k}= E {(xn + vn)(xn+k + vn+k)}
= E {xnxn+k}+E {vnvn+k}+ crossterms

Note that the cross terms have zero expectation. So

RYY [k] = RXX [k]+RVV [k]

and

SY (e
jω) = SX (e

jω)+SV (e
jω)

SV (e
jω) = |b0 +b1(cosω− j sinω)|2

= b2
0 +b2

1 cos2
ω +2b1b0 cosω +b2

1 sin2
ω

= b2
0 +b2

1 +2b1b0 cosω

Just verify the stated values of b0 and b1 solve this equation.

Multiply Xn with Xn +a1Xn−1 +a2Xn−2 = σWn and take the expectation to get

RXX [0]+a1RXX [1]+a2RXX [2] = σ
2.

Multiply Xn−1 with Xn +a1Xn−1 +a2Xn−2 = σWn and take the expectation to get

RXX [1]+a1RXX [0]+a2RXX [1] = 0.

Multiply Xn−2 with Xn +a1Xn−1 +a2Xn−2 = σWn and take the expectation to get

RXX [2]+a1RXX [1]+a2RXX [0] = 0.
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Use b0 = b1 = 1, which implies vn = en + en−1. So

RVV [0] = 2, RVV [1] = 1, RVV [2] = 0, . . .

We can estimate R̂XX using the given R̂YY and calculated R̂VV

R̂XX [0] = 2.74, R̂XX [1] =−0.46, R̂XX [2] = 1.41,

Now use the derived (Yule-Walker) equations[
a1
a2

]
=−

[
2.74 −0.46
−0.46 2.74

]−1[
−0.46
1.41

]
≈

[
1/12
−1/2

]
,

σ
2 =2.74− 0.46

12
− 1.41

2
≈ 2
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3 (a) Define the term white noise. What is the form of the autocorrelation function
for white noise, and what is its power spectrum? [15%]

SOLUTION:

White noise has autocovarince function as follows:

E(Wn−µ)(Wn+m−µ) = σ
2
W δ [m]

where µ = EWn (wide-sense ststionary).

Autocorrelation function has the form:

rXX [m] = σ
2
W δ [m]+µ

2

[note the possible constant term when non-zero mean].

Power spectrum:
σ

2
W +µ

2
δ [0]

(b) A pulse waveform sn = n/N, n = 0, ...N is buried in noise at a sample time n0, i.e.
the noisy signal is:

xn =

sn−n0 + vn, n−n0 = 0,1, ...,N

vn, otherwise,

where vn is white, zero-mean noise with variance σ2
v .

A FIR smoothing filter with N coefficients [1, 1, ..., 1] is applied to the noisy waveform.

(i) Show that the output yn of the filter has variance Nσ2
v when only noise vn is

input to the filter. [15%]
SOLUTION:

E[y2
n] = E[(

N−1

∑
i=0

(vn−i.1))
2] = Nσ

2
v

(ii) Determine and sketch the output of the filter when σv = 0, i.e. the noise is not
present and just the pulse sn−n0 is filtered.
SOLUTION: Output is

yn =
N

∑
i=1

hisn−i

So output is 0 up to n = n0.
Then, for n = n0, ...,n0 +N:

yn =
n−n0

∑
i=0

hisn−n0−i = 1/N
n−n0

∑
i=0

i = 1/(2N)(n−n0 +1)(n−n0)
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and similarly for n = n0 +N +1 : n0 +2N, see plot:

[20%]

(iii) What is the maximum expected signal-to-noise ratio at the output of the filter,
when applied to noisy pulse data xn? (i.e. now σv > 0.), and at what value of n does
this occur? [20%]
SOLUTION: The maximum signal output from the last part is at n = n0 +N, at
which point we have signal value (N +1)/2. Hence, the maximum SNR is:

(N +1)2/(4(Nσ
2
v ))

(iv) Now design the optimal filter for detection of the location n0 (no derivation
is required) and compare its performance (in terms of SNR) with that of the FIR
smoothing filter as N becomes large. [30%]
SOLUTION: The optimal choice is the Matched filter, so we choose the time-
reversed signal pulse for the FIR coefficients:

hp = (N− p)/N, p = 0, ...,N−1

The maximum SNR for the matched filter is just (from the lectures):

1/σ
2
v

N

∑
p=0

s2
p = 1/σ

2
v

N

∑
p=1

p2/N2 = (N +1)(2N +1)/(6Nσ
2
v )

using the given summation formula.
We can thus see that for large N the SNR tends to N/(3σ2

v ), which is a modest
improvement compared to N/(4σ2

v ) from the FIR smoothing filter.

Page 11 of 16 (TURN OVER



Version SJG/3

4 (a) A symmetric uniform probability distribution is defined as

fY (y|a) =

1/(2a), −a≤ y≤ a

0, Otherwise

A sequence of discrete-time measurements y1,y2,y3, ...,yn is made at the output of a, i.i.d.
symmetric uniform noise source, but the scaling of the noise, a, is unknown.

(i) Determine the likelihood function for a when n = 1 and n = 2 and sketch it as
a function of a, marking on the maximum likelihood estimator in each case. [15%]
SOLUTION:
n = 1, just rearrange the limits as follows:

fY (y|a) =

1/(2a), −a≤ a≥ |y|
0, Otherwise

n = 2,

fY (y1,y2|a) =

1/(2a)2, −a≤ a≥ |y1|, a≥ |y2|
0, Otherwise
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(ii) Determine the maximum likelihood estimator for an arbitrary number of
measurements n. Is this estimate likely to be unbiased for finite n? What do you
think would happen as n→ ∞? [20%]
SOLUTION:

aML = maxi{|yi|}

This will not be unbiased since aML is always less than a. As n→ ∞ though we
can expect to see the largest yi approaching a, hence we mig1ht expect aML to be a
consistent estimator.

(b) A communications network is monitored. It is desired to find the average rate of
symbols, λ . Prior information about the network traffic states that λ is distributed in the
following way:

f (λ ) =

λb2 exp(−λb), λ > 0

0, otherwise.

The time τ between each symbol is independently and randomly distributed as an
exponential random variable with mean 1/λ :

f (τ|λ ) = λ exp(−λτ)
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(i) The times of arrival of n successive symbols are now measured as
t1, t2, t3, ..., tn, where t0, the first symbol’s arrival time, is zero. Show that the
likelihood function for λ is:

λ
n exp(−λ tn)

and find the ML estimate of λ . [20%]
SOLUTION:

p(t1, ..., tn|λ ) =
n

∏
i=1

λ exp(−λ (ti− ti−1)) = λ
n exp(−λ tn)

ML estimate:
Differentiate the likelihood and equate to 0:

nλ
n−1 exp(...)− tnλ

n exp(...) = 0

So,
n = tnλ , λ = n/tn

(ii) Determine the Bayesian posterior density for λ (including its normalising
constant). [25%]
SOLUTION:
Multiply the prior by the likelihood:

λ
n exp(−λ tn)λb2 exp(−λb) = λ

n+1b2 exp(−λ (tn +b))

Now compute normalising constant:

∫
λ

n+1b2 exp(−λ (tn +b))dλ =
b2

(tn +b)n+2

∫
xn+1 exp(−x)dx

=
b2

(tn +b)n+2 (n+1)!

So, combining expression with normalising constant:

p(λ |t1, ..., tn) =
(tn +b)n+2

(n+1)!
λ

n+1 exp(−λ (tn +b))

(iii) Sketch the prior density, likelihood function and posterior density, marking
the MAP and ML estimators clearly on the sketch and commenting on their
relationship to the prior. Use the following values b = 1, n = 4 and tn = 5. [20%]
SOLUTION:
ML estimator:
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λ = n/tn = 0.8

MAP estimator:
Differentiate posterior and set to zero as before:

λ =
n+1
tn +b

= 5/6

Similarly, the prior has a maximum at λ = 1/b = 1.
So, sketch is as follows:

We observe that the MAP estimator (5/6) ‘pulls’ the ML estimator (4/5) towards the
maximum of the prior (1). This is the classic Bayesian regularisation effect...

[Note that, for any integer n: ∫
∞

0
xn exp(−x)dx = n!

]

END OF PAPER
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