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1 (a) Equalisers reduce the effect of intersymbol interference (ISI) and so improve
bit error rate (BER) performance.

(i) The zero forcing equaliser aims to completely eliminate ISI at the
sampling instants. To achieve this, the equaliser response must be

HE(z) =
1

P(z)

where P(z) is the z-transform of the sampled received pulse response p(n) .

(ii) The ZF equaliser can give rise to unwanted noise amplification if the
channel frequency response has nulls at particular frequencies. In this case
the ZF equaliser will have high gain at these frequencies. To overcome
this problem, the MMSE equaliser aims to minimise the error between the
received symbols and the transmitted symbols, thus explicitly including the
effects of noise in the design process. Thus a compromise between ISI
reduction and noise enhancement is achieved.

(iii) In a DFE, delayed and weighted detected symbols are fed back and used
to cancel ISI. Since detected symbols are used, they are noise-free and so
noise enhancement does not occur. However problems do occur if an error is
made in a received symbol. In this case, a burst of errors is likely to occur at
the equaliser output.

[30%]

(b)
p(n) = 1, 0.9, 0, 0, . . .

∴ P(z) = 1+0.9z−1

So the ideal ZF equaliser is

HE(z) =
1

1+0.9z−1

which is a first-order IIR filter with feedback coefficient −0.9. [10%]

(c) To get a 4-coefficient FIR approximation to the IIR ZF equaliser, we need
the first 4 terms of the binomial expansion of HE(z), which can be obtained either by
polynomial division or by the binomial theorem:

HE(z) = (1+0.9z−1)−1 = 1−0.9z−1 +0.81z−2−0.729z−3 + . . .
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Hence

HFIR(z) = 1−0.9z−1 +0.81z−2−0.729z−3

and the FIR-equalised pulse response is

PFIR(z) = P(z) HFIR(z) = (1+0.9z−1) (1−0.9z−1 +0.81z−2−0.729z−3)

= 1−0.6561z−4

For the specified unipolar scheme:

With no equaliser:

Worst case ’1’ = 1.0 v

Worst case ’0’ = 0+0.9 = 0.9 v

Worst case eye opening, h = 1−0.9 = 0.1 v

∴ Ratio
h
σ

=
0.1
σ

With equaliser:

Worst case ’1’ = 1.0−0.6561 = 0.3439 v

Worst case ’0’ = 0 v

Worst case eye opening, he = 0.3439−0 = 0.3439 v

Noise variance at equaliser output,

σe = σ

√
12 +0.92 +0.812 +0.7292 = σ

√
2.9975 = 1.73σ

∴ Ratio
he
σe

=
0.3439
1.73σ

=
0.2
σ

(twice as good as before)

[40%]
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(d) For the given MMSE equaliser:

HFIR(z) = 1−0.8z−1 +0.5z−2−0.3z−3

∴ PFIR(z) = P(z) HFIR(z) = (1+0.9z−1) (1−0.8z−1 +0.5z−2−0.3z−3)

= 1+0.1z−1−0.22z−2 +0.15z−3−0.27z−4

With equaliser:

Worst case ’1’ = 1.0−0.22−0.27 = 0.51 v

Worst case ’0’ = 0+0.1+0.15 = 0.25 v

Worst case eye opening, he = 0.51−0.25 = 0.26 v

Noise variance at equaliser output,

σe = σ

√
12 +0.82 +0.52 +0.32 = σ

√
1.98 = 1.407σ

∴ Ratio
he
σe

=
0.26

1.407σ
=

0.185
σ

We can see that the worst case eye opening is worse for the MMSE equaliser (0.26,
compared with 0.34 for the ZF one). However the rms noise for the MMSE is lower
(1.41σ , compared with 1.73σ ). Since the worst case eye opening occurs relatively
infrequently (all 4 of the ISI bits have to be the worst case polarity), we find in practice
that the lower effective noise of the MMSE equaliser improves the average bit error rate
performance compared with the ZF equaliser.

[20%]
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2 (a) (i) The state diagram of the code is shown below. It has only 2 states
because the state does not need to include the left-most bit (the input bit) in
the shift register. Transitions due to input bit 0 are shown in solid lines, and
those due to input 1 are shown in dashed lines. The edges are labeled with the
code bits corresponding to the transitions.

0 1

00 10

01

11

[15%]

(ii) We use the Viterbi algorithm. The trellis representation of the code is
shown in the Figure below.

Received
sequence

0

1

11 01 10 11
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B4

2
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1
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1
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2

2

0

0

1

22

2

2

0

0

0 1

1

1

00

01

11

10

•The 2 state values are shown at the left. The four pairs of bits in italics
show the 2 code bits produced by each edge into nodes A2 and B2. These
apply into An and Bn for any state transition time, n.

•The numbers on the edges indicate the distance of the output of the
transition from the corresponding bits of the received sequence (which
are shown at the bottom of the trellis).

•The numbers that are encircled at the nodes indicate the minimum
distance of the corresponding node from the origin (node 0).

We see that the minimum distance path is 0−B1−A2−A3−B4, with
a total distance from the received sequence of 0+0+1+0 = 1 bit.

The decoded sequence is 11 01 00 11.
The corresponding input sequence is 1 0 0 1. [40%]

Version: NGK/3 (TURN OVER for continuation of SOLUTION 2



6

(b) (i) The error pattern has length n = 5, and the syndrome has length
(n− k) = 3. Hence k = 2, and the rate is 2/5. [5%]

(ii) The parity check matrix H has dimension (n− k)× n, i.e., 3× 5. The
syndrome s for an error pattern e is eHT , i.e., it is of the form

s = [s1 s2 s3] = eHT = [e1 e2 e3 e4 e5]


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


Notice that the syndrome for the error pattern [0 0 0 0 1] is the last row of HT ;
similarly the syndrome for the error pattern [0 0 0 1 0] is the fourth row of HT

etc. Therefore, reading off the corresponding syndromes from the table, we
conclude that HT has the following form:

HT =


1 0 0
1 0 1
1 1 1
0 1 0
0 0 1


The parity check matrix is thus

H =

1 1 1 0 0
0 0 1 1 0
0 1 1 0 1


[25%]

(iii) Observing that no two columns of H sum to 0, but the sum of the
second, third, and fourth columns is 0, we conclude that dmin = 3. This code
can therefore correct dmin−1

2 = 1 error and detect dmin−1 = 2 errors. [15%]
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3 (a) The phasor constellations are:

16-PSK:

 i

 q

Fig 5.1: 16-level PSK phasor diagram
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16-QAM:
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Fig 5.2: 16-QAM phasor diagram
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[20%]
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(b) M-PSK constellations are constrained to be constant amplitude. Hence they
lie on a circle in the phasor diagram and the distance between points will decrease linearly
∝

1
M with increasing M. The points of a QAM constellation are spread uniformly in 2-D

space and hence the distance between points decreases only with 1√
M

.

There is only a small difference in the spacings when M = 16, but the difference of
spacing between PSK and QAM doubles for every 4-fold increase in M. [20%]

(c)

s(t) = Re[p(t) e jωct ] =
1
2

[
p(t) e jωct + p∗(t) e− jωct

]
If

p(t)⇔ P(ω) =
∫

∞

−∞

p(t) e− jωtdt

then

p∗(t)⇔ P∗(−ω) =

[∫
∞

−∞

p(t) e jωtdt
]∗

and
p(t) e jωct ⇔ P(ω−ωc)

The Fourier transform of p∗(t) e− jωct is then given by∫
∞

−∞

p∗(t) e− jωct e− jωtdt =
∫

∞

−∞

p∗(t) e− j(ω+ωc)tdt = P∗(−(ω +ωc))

Substituting into the FT of the equation for s(t) gives

S(ω) =
1
2
[P(ω−ωc)+P∗(−(ω +ωc))]

[25%]

(d) For both M-PSK and M-QAM, the symbols are rectangular pulses of duration
Ts, where

Ts =
1

symbol rate
= m .

1
bit rate

=
m
R

The pulses are zero mean and uncorrelated with each other (assuming random binary
data), so the phasor spectrum P(ω) will be proportional to sinc

(
ωTs

2

)
, the spectrum of

te rectangular pulse g(t).

With random symbols, the power spectrum |P(ω)|2 will be proportional to
| sinc

(
ωTs

2

)
|2. The first zeros of |P(ω)|2 will therefore occur when ωTs

2 =±π , i.e. when

ω =±2π
Ts

rad s−1 or f =± 1
Ts

Hz.
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When modulated onto a carrier of frequency ωc rad s−1 or fc Hz, the power
spectrum is given by:

|S(ω)|2 =
1
4

[
|P(ω−ωc)|2 + |P(−(ω +ωc))|2

]
as shown below, assuming negligible overlap of the shifted spectral components centred
on fc and − fc.

1
Ts

2
Ts

3
Ts

-fc fc0

P(w) 2

S(w) 2

freq

freq

Hence the RF bandwidth will be from ( fc− 1
Ts
) to ( fc + 1

Ts
) Hz

=
2
Ts

=
2R
m

=
2R

log2 M
Hz

This applies to both M-PSK and M-QAM. [35%]
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4 (a) The 2 key advantages of digital methods over analogue for broadcast signals
are:

•The ability of digital signalling to reject channel noise at every stage of the
transmission channel;

•Greater capacity of digital transmissions when sophisticated source
compression methods are used, and when single-frequency transmission is
feasible from a network of transmitters.

The main disadvantage of digital formats is their substantially increased
demodulation and decoding complexity, but this can now be provided cheaply by VLSI
chips. The availability of complex chips has made feasible source compression and
complicated signal coding and modulation formats, and thus has driven the move to digital
in order to provide many more channels within the limited spectrum bandwidth available.

[15%]

(b) Digital audio is designed to be received in cars and other moving vehicles,
so there is a need for a highly robust modulation format that has optimal noise-rejection
properties and is resilient to rapidly changing multi-path channels. Hence, for audio,
QPSK was chosen as a highly robust modulation with fairly good spectral efficiency (two-
times better than BPSK).

Digital video must handle the much higher data rates of video signals, compared
with audio, and so needs a highly spectrally efficient modulation. Therefore 64-QAM
was chosen as being 3 times better in bandwidth efficiency than QPSK (6 bits / symbol,
instead of just 2 bits / symbol). Televisions are normally in fixed locations (not in vehicles)
so fixed directionally-selective antennae can be used. This reduces the multipath delay
spread and largely eliminates the problems of rapidly time-varying channels. Hence the
lower noise tolerance of 64-QAM is acceptable for video broadcasts. [20%]

(c) The block diagram for a COFDM system is shown below (from the lecture
notes):
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The key feature of the DFT is the orthogonality of the DFT subcarriers (tones). As
long as they are spaced 1

TD
Hz apart in frequency, then each subcarrier can be demodulated

independently of the others, without any mutual interference, where TD is the DFT
analysis period or block length. It is important that no data-induced phase or amplitude
transitions occur within the DFT analysis period – otherwise orthogonality is destroyed
and there will be ISI between subcarriers. The FFT is a computationally efficient way of
implementing the DFT, especially when N = 2n. [20%]

(d) Multi-path delays tend to cause frequency-selective fading, which ‘knocks
out’ a few of the DFT subcarriers in a random way. Thus ECC is needed to allow the
source data to be recovered, despite the losses of some data over the channel.

Guard periods (bands) are needed between each DFT block, so that data-induced
phase transitions can be kept within the guard periods and thus the transitions will not
affect the orthogonality of the DFT subcarriers during the analysis periods. [20%]

(e) If the subcarrier spacing is 1.5 kHz, in order to preserve orthogonality the
analysis period of the DFT must be

1
1500

= 0.667 ms

Adding the guard period of 0.1 ms means that the block transmoission rate will be

103

(0.667+0.1)
= 1304 symbol s−1 on each subcarrier.

Version: NGK/3 (TURN OVER for continuation of SOLUTION 4



12

With 1200 subcarriers and 2 bit / symbol (for QPSK), the channel data rate will be

1200×2×1304 = 3.13 . 106 bit s−1

This is the rate available for the redundantly encoded data from the ECC encoder. Hence
the user data rate will be half of this = 1.565 . 106 bit s−1.

The bandwidth of the 1200 subcarriers will be approx

1200×1.5 kHz = 1.8 MHz

In practice some additional multiples of 1.5 kHz would need to be added between
COFDM signals to allow for adequate decay of the sinc(x) sidelobes of the outer
subcarriers – say 50 to 100 kHz at each end of the block of 1200 subcarriers, increasing
the total bandwidth to 1.9 or 2.0 MHz. It is also usual to leave one subcarrier slot empty
at the centre of the band, to provide a ‘key’ for frequency offset correction in the receiver.

[25%]

END OF SOLUTIONS
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