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EGT2
ENGINEERING TRIPOS PART IIA

Wednesday 1 May 2019 9.30 to 11.10

Module 3F4

DATA TRANSMISSION

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 Let x(t) =
∑∞

k=−∞ Xk p(t − k) be a transmitted PAM signal, where p(t) is the
rectangular pulse

p(t) =



1, 0 ≤ t < 1,

0, otherwise.

The {Xk } are information symbols chosen from a constellation. The received signal is
y(t) = x(t) + n(t), where n(t) is white Gaussian noise with zero-mean and power spectral
density N0/2. The received signal is passed through a filter with impulse response p(−t).
The output of the filter is r (t) =

∑∞
k=−∞ Xkg(t − k) + ñ(t), where

g(t) = p(t) ? p(−t) and ñ(t) = n(t) ? p(−t).

(a) Sketch g(t). [15%]

(b) Show that the filter output sampled at times m = 1, 2, . . . is r (m) = Xm + ñ(m) for
m ≥ 1. [5%]

(c) Due to imperfect synchronization, the filter output r (t) is sampled at time instants
{1−∆, 2−∆, . . . , }, where 0 < ∆ < 1 is the timing error. Obtain a compact expression for
the sampled filter output r (m − ∆), for m ≥ 1. [15%]

(d) If you had to recover the symbol Xm from any one of the sampled filter outputs,
which one of the sampled outputs {r (1 − ∆), r (2 − ∆), . . .} would you use? Justify your
answer, and state any assumptions you make. [15%]

(e) Suppose the PAM constellation is {−A, A}, with each symbol being equally likely.
Also assume that ∆ < 1

2 . Suppose that we detect Xm from r (m − ∆) (without any
equalisation). Compute the exact probability of detection error, expressing your answer
in terms of ∆ and the ratio A2

N0
using the Q-function [25%]

Q(x) =
1
√

2π

∫ ∞
x

e−u2/2du.

(f) Assuming ∆ = 0.1, design a three-tap FIR zero-forcing equaliser to recover the
transmitted symbols from the sequence {r (m − ∆)}−∞<m<∞. Write an expression for the
output of the equaliser, indicating the residual interference and additive noise. [25%]
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2 (a) Consider a single TCP-Reno connection with window size at time t denoted
by W (t), and the packet loss probability by q(t).

(i) If the loss probability q(t) is doubled from 0.05 to 0.1, what is the factor by
which the average transmission rate decreases? Assume that the other parameters
of the connection remain unchanged. [10%]

(ii) Briefly describe how W (t) is increased in the slow start phase versus the
congestion avoidance phase. [10%]

(iii) Briefly describe the two ways in which W (t) can decrease when congestion is
detected. [10%]

(b) Consider the set of M waveforms s1(t), . . . , sM (t) defined within the time interval
t ∈ (0, 1] as follows. For i = 1, . . . , M ,

si (t) =



√
E M, for (i−1)

M < t ≤ i
M

0, otherwise,

where E is the energy of each waveform.
The transmitter wishes to transmit one of M equally likely messages using the set of
waveforms. Denote the transmitted signal by x(t), where x(t) is one of the waveforms
s1(t), s2(t), . . . , sM (t). The received signal is y(t) = x(t) + n(t), where n(t) is white
Gaussian noise with zero mean and power spectral density N0

2 .

(i) Determine an orthonormal basis for the M waveforms {s1(t), . . . , sM (t)}, and
use the basis to express the waveforms as vectors s1, . . . , sM . [10%]

(ii) Assuming themessages are equally likely, specify a receiver to optimally detect
the transmitted message from y(t). Your answer should describe any operations on
y(t) and a detection rule to determine which message was transmitted. [20%]

(iii) Obtain an upper bound for the probability of error for the detection rule in
(b)(ii) above. The bound must be expressed in terms of Eb

N0
and the Q-function,

where Eb is the average transmitted energy per bit and [25%]

Q(x) =
1
√

2π

∫ ∞
x

e−u2/2du.

(iv) Howdoes the error probability bound computed in (b)(iii) scalewith increasing
M? State any assumptions required on Eb

N0
, and briefly explain the reason for the

scaling behaviour. [15%]
Hint: You may use the bound Q(x) ≤ e−x2/2, for x ≥ 0.
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3 (a) Consider an 8-ary phase shift keying (PSK) constellation consisting of 8 points
uniformly spaced around a circle of radius A. This constellation is used for signalling over
the discrete-time AWGN channel

Y = X + N,

where N is a complex random variable with real and imaginary parts each i.i.d. Gaussian
∼ N (0, N0

2 ).

(i) Sketch the constellation and indicate the decision regions for the optimal
detector. [10%]

(ii) Show that the probability of detection error Pe can be bounded as

Pe ≤ 2Q *.
,

√
6Eb
N0

sin(π/8)+/
-
,

where Eb is the average energy per bit of the constellation, and [25%]

Q(x) =
1
√

2π

∫ ∞
x

e−u2/2du.

(b) Suppose that due to channel uncertainty, the received output is

Y =
√

s X + N,

where s ≥ 0 is real-valued, and is called the ‘fading’ coefficient. The input symbol X is
drawn from the same 8-PSK constellation used in part (a), and N is a complex random
variable with real and imaginary parts each i.i.d. Gaussian ∼ N (0, N0

2 ).

(i) Assuming the receiver knows the value of the fading coefficient s, give a bound
on the probability of error of the optimal detector in terms of s, the ratio Eb

N0
, and

the Q-function. [10%]

(ii) The probability density function of the fading coefficient is given by f (s) =
e−s, s ≥ 0. Using this, compute a bound for the expected probability of detection
error, where the expectation is computed with the distribution of s. [15%]
Hint: Use the bound Q(x) ≤ 1

2e−x2/2 for x ≥ 0.

(iii) Compare the error probability bound computed in (b)(ii) with the one for the
AWGN channel in (a)(ii), commenting on how they decrease as Eb

N0
increases. [10%]

(c) Consider the 8-point QAM constellation shown in Fig. 1. The distance between the
nearest neighbour points in this QAM constellation is the same as the distance between
adjacent points in the 8-PSK constellation in part (a).
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a

b

45◦

Fig. 1

(i) Determine the radii a and b of the inner and outer circles in terms of A, the
radius of the 8-PSK constellation. (Note that the constellation points at (a, 0), (0, a)
and ( b√

2
, b√

2
) are equidistant from one another.) [20%]

(ii) Compute the average power of the QAM constellation in Fig. 1 in terms of A.
[10%]
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4 (a) Consider the directed network shown in Figure 2 below. The direction of each
link is indicated by the arrow, and the cost along the directed link is indicated by the
number. For example, the cost from B to D is 3, while the cost from D to B is 2.

A

B

C

E

D

2

4

1 2
3

7

2

1

Fig. 2

(i) Use the Bellman-Ford algorithm to determine the minimum-cost path to node
E from each of the other nodes. Use a table to specify each step of the computation
process. [25%]

(ii) Briefly describe the main differences between the Bellman-Ford and Djikstra
algorithms to determine minimum-cost paths in a network. [15%]

(b) Consider the convolutional code shown in Figure 3. Two input bits at a time are
shifted into the register to produce three code bits. For example, if the shift register
currently contains (from left to right) 01 11 and the next input bits are 10, the new content
of the shift register will be 10 01.

+

x1

Input
Sequence s Sequence x

Coded

+

+
x3

x2

Fig. 3
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(i) What is the rate of the code? [5%]

(ii) Draw the state diagram of the code, labelling each branch with the input and
output bits corresponding to the transition along that branch. [25%]

(iii) Define the free distance of a convolutional code, and briefly explain its
significance. [15%]

(iv) Find the free distance of the code in Figure 3, and justify the procedure you
use. [15%]

END OF PAPER
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