
3F4 Data Transmission 2022

Crib

Question 1

Consider an M -ary modulation scheme where for m = 1, . . . ,M , the m-th waveform is given by

sm(t) =

{
0 (m−1)T

M ≤ t ≤ mT
M

+A otherwise

(a) Calculate the energy of each of the signals s1(t), . . . , sM (t) and the average energy of the signal
constellation Es.

All signals have the same energy, and thus the average energy is equal to the energy of each of
the individual signal energies. The energy of a signal is equal to

Es = A2T
M − 1

M
.

(b) Specify an orthonormal basis for the signal set, specify the dimension and give the vector repre-
sentation of each signal.

An orthonormal basis is

φm(t) =

{
0 (m−1)T

M ≤ t ≤ mT
M√

M
T (M−1) otherwise

for m = 1, . . . ,M . The dimension is M . The vector representation is

s1 = (A

√
T (M − 1)

M
, 0, . . . , 0) = (

√
Es, 0, . . . , 0) (1)

s2 = (0, A

√
T (M − 1)

M
, 0, . . . , 0) = (0,

√
Es, 0, . . . , 0) (2)

... (3)

sM = (0, . . . , 0, A

√
T (M − 1)

M
) = (0, . . . , 0,

√
Es). (4)

(c) We consider transmission over an additive Gaussian noise channel with power spectral density
N0
2 .

(i) Assuming that symbols are equiprobable, derive the optimal detector.

This is bookwork from the lectures.

PY |X(y|sm) = PY |X(y1|sm,1 = 0) · · ·PY |X(ym|sm,m =
√
Es) · · ·PY |X(yM |sm,M = 0) (5)

=
1

(
√
πN0)M

e
− y21

N0 · · · e−
(ym−

√
Es)

2

N0 · · · e−
y2M
N0 (6)

=
1

(
√
πN0)M

e
−

∑M
i=1 y2i
N0 e

− Es
N0 e

2
√
Esym
N0 (7)
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Assuming equiprobable symbols, the maximum likelihood is the optimal detector. It com-
putes the following estimate

m̂ = arg max
m=1...,M

PY |X(y|x = sm) (8)

= arg max
m=1...,M

e
2
√
Esym
N0 (9)

= arg max
m=1...,M

ym, (10)

i.e., the optimal detector outputs the position m of the largest component of the received
vector.

(ii) Assume that M = 2. Show that the pairwise probability of error is given by

pe = Q

(√
Es

N0

)
.

and compare it with the error probability of 2-PAM.

With M = 2 we have that the error probability is

pe =
1

2
pe(s1 was transmitted) +

1

2
pe(s2 was transmitted). (11)

The first term gives

pe(s1 was transmitted) = P[y2 ≥ y1] (12)

= P[n2 ≥
√
Es + n1] (13)

= P[n2 − n1 ≥
√
Es]. (14)

Since n2 − n1 is Gaussian with zero mean and variance N0, we have that

pe(s1 was transmitted) = Q

(√
Es

N0

)
.

The second term pe(s1 was transmitted) is identical. Thus, the overall error probability is

pe = Q

(√
Es

N0

)
.

Since the error probability of 2-PAM is

pe = Q

(√
2
Es

N0

)
,

2-PAM gives a better error probability thanks to the factor 2 and the fact that the Q-
function is decreasing. Indeed, it takes twice the energy to attain the same error probability
of 2-PAM; a factor of 3 dB.

(iii) Using the previous result, provide an upper bound to the probability of error with arbitrary
M .

We have that for arbitrary M

pe ≤ (M − 1)P[n2 − n1 ≥
√
Es] (15)

= (M − 1)Q

(√
Es

N0

)
. (16)
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(iv) Assume that M = 2k, where k is a positive integer. Show that if k → ∞, the error
probability vanishes exponentially as long as

Eb

N0
> 2 ln 2.

You may use the inequality Q(x) ≤ 1
2e
−x2

2 .

From the above,

pe ≤ (M − 1)Q

(√
Es

N0

)
(17)

≤ M − 1

2
e
− 1

2
Es
N0 (18)

< Me
− 1

2
k
Eb
N0 (19)

= 2ke
− 1

2
k
Eb
N0 (20)

= e
− k

2
(
Eb
N0
−2 ln 2)

. (21)

Thus, as long as Eb
N0

> 2 ln 2 the error probability vanishes exponentially with k.

Part (a) was done well mostly by everyone. Part (b) was done generally well, although some
did not properly specify the constants of the orthonormal basis. Most chose the shifted pulse basis,
and few chose the scaled signal set. Part (c).(i) was rarely answered well, most wrote what they
knew about maximum likelihood detection or wrote the final result without justification, but did not
derive the optimal detector. Part (c).(ii) was generally well-answered, although some candidates
found incorrect shortcuts to prove the result. Part (c).(iii) was generally well-answered but several
failed to explain and apply the union bound. Part (c).(iv) was generally well-answered.

Question 2

(a) Consider the signal set shown below.

T
2

T

+A

−A

t

s1(t)

T
2

T

+A

−A

t

s2(t)

T
2

T

+A

−A

t

s3(t)

(i) Determine the dimension of the signal space and find an orthonormal basis using the
Gramm-Schmidt procedure. The dimension of the signal space is 2. We start the Gramm-
Schmidt procedure with s1(t). Since the ‖s1(t)‖ = A

√
T , we have that

f1(t) =


1√
T

0 ≤ t ≤ T
2

− 1√
T

T
2 < t ≤ T

0 otherwise

We continue with

g2(t) = s2(t)− 〈s2(t), f1(t)〉 · f1(t) (22)

f2(t) =
g2(t)

‖g2(t)‖
. (23)
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We have that
〈s2(t), f1(t)〉 = − 1√

T
·A · T = −A

√
T

Then, g2(t) = 0, and thus f2(t) = 0. We continue with the third signal

g3(t) = x3(t)− 〈x3(t), f1(t)〉 · f1(t)− 〈x3(t), f2(t)〉 · f2(t) (24)

= x3(t)− 〈x3(t), f1(t)〉 · f1(t) (25)

f3(t) =
g3(t)

‖g3(t)‖
. (26)

We have that

〈x3(t), f1(t)〉 = −A
√
T

2
.

Thus,

g3(t) =


A
2 0 ≤ t ≤ T

2
A
2

T
2 < t ≤ T

0 otherwise

Thus

f3(t) =

{
1√
T

0 ≤ t ≤ T
0 otherwise.

(ii) Draw the signal space and calculate the average energy per symbol Es. The constellation
is given below

−A
√
T −A

2

√
T A

√
T

A
2

√
T

f1(t)

f2(t)

The average energy is equal to

Es =
1

3

(
2A2T +

1

2
A2T

)
=

5

6
A2T.

(iii) Sketch the optimal decision regions with equiprobable symbols and derive an upper bound
to the error probability. Express the result in terms of the average energy of the signal set

and of the Q-function, where Q(x) = 1√
2π

∫∞
x e−

u2

2 du.

The decision regions are shown in the figure below
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0

0

We use the union bound for the error probability to obtain

pe ≤
1

M

M∑
i=1

∑
j 6=i

Q

(√
‖si − sj‖2

2N0

)
.

We now calculate each of the distances, termed dij for simplicity.

d12 = ‖s1 − s2‖2 = 4A2T (27)

d13 = ‖s1 − s3‖2 =
5

2
A2T (28)

d23 = ‖s2 − s3‖2 =
1

2
A2T (29)

pe ≤
2

3

(
Q

(√
4A2T

2N0

)
+Q

(√
5
2A

2T

2N0

)
+Q

(√
1
2A

2T

2N0

))
(30)

=
2

3

(
Q

(√
12Es

5N0

)
+Q

(√
3Es

2N0

)
+Q

(√
3Es

10N0

))
. (31)

(b) The 12-QAM constellation shown on the figure below (left) is used for transmission over a
communications channel. In absence of noise, the received constellation is shown on the figure
below (right).

(i) Discuss the input-output characteristics of the channel.

If we observe the inner 4 points on the original constellation, they have simply been rotated
π
4 . The outer points (which all lie on a circle) have suffered not only a rotation but also an
attenuation. This channel has therefore introduced different phase-shifts and attenuations
to different input energies, and therefore has non-linear characteristics.
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(ii) What operations would the transmitter need to do in order to compensate for the channel
effects and receive the original 12-QAM constellation? Sketch the transmitted constellation.

The transmitter would need to rotate the inner points by −π
4 as well as the outer points

by the negative of the corresponding angle. In addition, the transmitter would need to
multiply the magnitude of the outer points by the inverse of the attenuation introduced.

The resulting transmitted constellation is given below.

Part (a).(i) was done correctly by many candidates, but several did not apply the Gramm-Schmidt
procedure correctly despite knowing what specific basis they wanted to obtain. The question admitted
several correct answers. Part (a).(ii) was generally well-answered, although some of mistakes from
Part (a).(i) propagated to Part (a).(ii). Part (a).(iii) was turned out to be very difficult. Many
candidates correctly sketched the optimal decision regions of their constellations, but found it diffi-
cult to calculate the probability of error. Part (b).(i) was generally well-answered, although several
candidates only pointed to a phase rotation and did not mention the attenuation introduced by the
channel. Part (b).(ii) was answered well by many of those who answered well Part (b).(i). Several
candidates explained equalisation and OFDM but the answer was not connected with either.

Question 3

(a) Consider a PAM system with pulse shape p(t) where the transmitted signal is x(t) =
∑∞

k=−∞Xkp(t−
kT ), where Xk are chosen from a constellation. The received signal y(t) is filtered through a
low-pass filter with impulse response q(t).

(i) Write down the expression for the output of the low-pass filter. The output of the low-pass
filter is given by

r(t) = x(t) ? q(t) (32)

=

∫ ∞
−∞

q(u)x(t− u)du (33)

=
∞∑

k=−∞
Xk

∫ ∞
−∞

q(u)p(t− kT − u)du (34)

=
∞∑

k=−∞
Xkg(t− kT ) (35)

where g(t) = q(t) ? p(t) is the overall filter.

(ii) Write the time- and frequency-domain conditions that the pulse and low-pass filters need
to fulfill in order not to have inter-symbol interference.

If we sample the output of the filter at mT , we obtain

r(mT ) =
∞∑

k=−∞
Xkg((m− k)T ) (36)

6



there will be no inter-symbol interference if

g(mT ) =

{
1 m = 0

0 otherwise

In the frequency domain this is precisely the Nyquist criterion. The combined pulse g(t)
needs to be such that ∞∑

n=−∞
G(f − n

T
) = T.

(iii) Consider a frequency-selective channel with impulse response

h(t) =

L∑
`=1

α`δ(t− τ`).

Explain the main impairment this channel introduces. Briefly explain the main methods
to deal with this channel impairment.

This impulse response will most likely cause inter-symbol interference (ISI), especially if
T < τL. There are essentially 2 methods to combat ISI:

i. Equalisation: this is done by processing the received signal at the receiver trying to
remove or mitigate the effect of ISI. There are two types of equalisers, zero-forcing
and MMSE. The first removes ISI but might enhance the noise; MMSE finds a better
tradeoff between reducing ISI and noise.

ii. OFDM: this requires a complete re-design of the end-to-end communications system.
OFDM operates by converting the ISI channel into a set of parallel channels, each with
a flat response.

(b) Describe briefly the difference between distance-vector protocols and link-state protocols for
routing. Give an example for each and state which routing algorithm it uses.

Distance vector protocols: broadcast distances to destinations that you know to your neighbours,
eg, RIP uses Bellman-Ford.

Link-state: send distances to your neighbours to everyone, e.g., OSPF uses Dijkstra.

(c) Consider a network with 3 nodes (A, B and C). Shortest path routing is used where the weight
of each link depends on it’s capacity and the flow on that link. The initial weight of the links
from from A to B and C to A, and from B to C and C to B, are 1. There is no direct link beween
A and C. Due to a change in flow, the weight of the link from B to C suddenly changes to 100.
Describe how the routing information is subsequently updated in the case of:

(a) A link state protocol.

B sends updated distance to C to nodes A and C, who recompute routing tables correctly.

(b) A distance vector protocol (assume in this case that B receives a packet from A containing
its distance vector at the same instance at the weight changes). A advertises to B a route
of length 2 to C, this is better than the new distance 100, so B sends packets addressed to
C to node A, and advertises a route of length 3 to C (via A). A now advertises a route of
length 4, etc. This continues on until A advertises a route of length 100, and until this is
time all packets aimed at C from A or B just get passed back and forth between A and B.

(d) What undesirable interaction been congestion control and routing can occur even in situations
where a link state protocol is used ?

Route flapping: congested routes get a longer length and so working algorithms move flows away
from them. Then, the new routes get congested and flow switches back.
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Generally answered well by those that took it. Part (a).(i) was generally well-answered, although
several candidates did not write the expression correctly despite being in the notes. Parts (a).(ii) and
(a)(iii) were generally well-answered. Part (b) was generally well-answered, as was Part (c).(i). Few
candidates answered Part (c).(iii) correctly and a common mistake was to arrive at an update after
2 iterations.

Question 4

Consider the convolutional encoder in Fig. 1.

D D
Uk

+

+

X2k−1

X2k

Figure 1: Figure 1

(a) What is the rate of the code?

The code has rate R = 1/2 because it emits two code digits X2k−1, X2k for every input digit Uk.

(b) Draw the state diagram of the encoder, labelling each branch with the input and output bits
corresponding to that branch.

00

1001

11

1/10

0/00

0/11

1/01

1/00

0/10
1/11

0/01

(c) A sequence of four symbols followed by two termination zeros is transmitted over a binary sym-
metric channel (BSC) and the received sequence is 10, 10, 11, 01, 10, 01. Determine a maximum
likelihood code sequence and the corresponding information sequence for this received sequence.

We use the Viterbi algorithm to decode

00 00 00

01

10

11

10

00

01

10

11

00

01

10

11

00

01

0000 00 00 x 00 x 00 00 x

10 10 10
x

10
x

11 11 11 11

x

01 01 01

10
x

10
x

10

00 x 00 x

01 01 01
x

01

11 11

10 10 11 01 10 01

1

0

2

1

1

2

2

1

1

2

1

2

2

1

2

1
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and conclude that the unique maximum likelihood sequence is 10, 11, 11, 01, 10, 01 and the cor-
responding information sequence is 1, 0, 1, 1.

(d) The bit and block error frequencies for a Viterbi decoder and a Bahl Cocke Jelinek Raviv (BCJR)
decoder were measured through simulation for long data blocks and recorded as f1 = 0.000126,
f2 = 0.000174, f3 = 0.0346, f4 = 0.0375, but we forgot to label the measurements. Determine
which of the four frequencies f1, f2, f3 and f4 corresponds to which measurement, i.e., (Viterbi,
block error), (Viterbi, bit error), (BCJR, block error) and (BCJR, bit error) and justify your
answer.

The two smaller values are clearly the bit error frequencies and the two larger the block error
frequencies, because any single bit error in a block would lead to a block error. The BCJR is
optimal in terms of bit error probability and the Viterbi algorithm is optimal in terms of block
error probability, resulting in the assigments

f1 −→ (bit error, BCJR)

f2 −→ (bit error, Viterbi)

f3 −→ (block error, Viterbi)

f4 −→ (block error, BCJR)

(e) Is the encoder catastrophic? Justify your answer.

The encoder is catastrophic because its connection polynomials are (1+D) andD+D2 = D(1+D)
and the greatest common divisor of these two polynomials is 1 + D which cannot be expressed
in the form D` and hence corresponds to a catastrophic encoder according to the Massey-Sain
theorem.

(f) Determine the free distance dfree of the code and specify what length input sequences generate
code sequences of weight dfree? Explain if and how your findings are consistent with your answer
to part (e).

We split the zero state to obtain a transfer diagram from/to the zero state, labeling the branches
with JDw where w is the Hamming weight of the corresponding output,

00 10 01

11

00
JD JD2

JD

J

JD

JD2

JD

and obtain the transfer function by solving a system of equations or using Mason’s gain formula
for signal flow graphs

T (D,J) =
J3D4

1− J − J2D4

= J3D4(1 + (J + J2D4) + (J + J2D4)2 + (J + J2D4)3 + . . .)

= D4(J3 + J4 + J5 + . . .) + o(D8)

showing that dfree = 4 and there are paths of lengths 3, 4, 5, 6, . . . that generate codes sequences
of weight 4. This is consistent with our statement that the encoder is catastophic, since there
are input sequences of any length that map to a codeword of weight 4, and hence with only 2
channel errors we can cause an unbounded number of errors in the input sequence estimate.

Most students got the rate right and almost everyone was able to draw an accurate state diagram
of the convolutional encoder. Performance on the Viterbi algorithm in part (c) was variable, with
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many having not completely understood the meaning of a terminated code (the last two 0s terminate
the encoder back to the all-zero state. They are NOT information symbols). Many struggled to rank
the error probabilities of decoders in part (d). Students were expected to apply common sense to
understand that block error rates are an order of magnitude higher than bit error rates. Not many
did, but any answer that had a lower block error rate for the block-error optimal Viterbi algorithm
and a lower bit error rate for the bit-error optimal BCJR was accepted as correct. The last two parts
were more advanced. There were quite a few students who did them perfectly but also many who did
not attempt these parts.
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