
3F4 Data Transmission 2023

Crib

Question 1

(a) The encoder has rate R = 1/3 because it emits 3 code digits for every input digit. Its description
in octal notation is (11, 12, 17)8.

(b) The encoder has 23 = 8 states. The transitions from the state (1, 1, 0) lead to:{
state (0, 1, 1) for input 0 with corresponding outputs (0, 1, 0)

state (1, 1, 1) for input 1 with corresponding outputs (1, 0, 1)

(c) See attached Viterbi algorithm with computed Hamming distance metrics. The recovered max-
imum likelihood (ML) code sequence is 111,110,101,000,000,111,110,101 corresponding to the
information sequence 1,1,1,1,1. The solution is unique as there are no ties on the winning path.

(d) (a)

P(U = 1) =

∑
i,j such that u=1 αiγijβj∑

i,j αiγijβj

=
3 + 2 + 5 + 2 + 4 + 2 + 1 + 3

1 + 3 + 4 + 2 + 1 + 5 + 2 + 2 + 3 + 4 + 6 + 2 + 3 + 1 + 5 + 3

=
22

47
= 0.468

(b)

P(X2 = 1) =

∑
i,j such that x2=1 αiγijβj∑

i,j αiγijβj

=
3 + 2 + 1 + 2 + 4 + 6 + 3 + 5

47
=

26

47
= 0.553

(e) The encoder is catastrophic because its connection polynomials are 1 +D3, 1 +D2 and 1 +D +
D2 +D3 which are all divisible by 1+D in binary. According to the Massey & Sain theorem, the
greatest common divisor of the connection polynomials must be of the form D` for an encoder
not to be catastrophic. For this encoder, an input sequence of all ones corresponding to a D
transform of 1

1+D = 1 +D+D2 +D3 + . . . would result in a finite Hamming weight sequence on
all 3 outputs and hence an overall finite Hamming weight path, so that a finite number of errors
may result in an infinite number of decoding errors.
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Extra copy of Fig. 2: labeled trellis diagram for Question 1.
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Figure 1: Trellis.
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Question 2

(a) The Gram-Schmidt method constructs an orthonormal basis as follows

f1(t) =
s1(t)

‖s1(t)‖
=

{
1√
T

0 ≤ t ≤ T
0 otherwise.

The next signal is

f2(t) =
g2(t)

‖g2(t)‖
(1)

g2(t) = s2(t)− 〈s2(t), f1(t)〉f1(t) (2)

= s2(t) (3)

and thus

f2(t) =


1√
T

0 ≤ t ≤ T
2

− 1√
T

T
2 < t ≤ T

0 otherwise.

Similarly,

f3(t) =
g3(t)

‖g3(t)‖
(4)

g3(t) = s3(t)− 〈s3(t), f1(t)〉f1(t)− 〈s3(t), f2(t)〉f2(t) (5)

= s3(t) (6)

since they are orthogonal. Thus

f3(t) =



1√
T

0 ≤ t ≤ T
4

− 1√
T

T
4 < t ≤ T

2
1√
T

T
2 < t ≤ 3T

4

− 1√
T

3T
4 < t ≤ T

0 otherwise.

Therefore, the dimension is K = 3. The signal set is orthogonal.

(b) The transmission rate is Rb = 1
T log2 3bits/s.

(c) The vector representation is

s1 = (A
√
T , 0, 0), s2 = (0, A

√
T , 0), s3 = (0, 0, A

√
T ) (7)

The average energy is Es = A2T and the minimum distance is 2A2T since all constellation points
are at the same distance.

(d) Since the signal set is orthogonal, the optimal detector is formed by a bank of correlators (or
matched filter), followed by the rule

m̂ = arg max
i=1,2,3

yi

where yi is the output of the ith correlator.

(e) All are equally vulnerable, since the signal set is orthogonal and all non-zero coordinates are the
same.
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(f) The union bound states that

pe ≤
1

M

M∑
m=1

∑
m′ 6=m

Q

(√
‖sm − sm′‖2

2N0

)
.

Since the signal set is orthogonal, and all signals are at the same distance, the above bound
becomes

pe ≤ (M − 1)Q

(√
d2min

2N0

)
= 2Q

(√
Es
N0

)
(g) The bound is valid at high SNR, as this is when the individual pairwise error events dominate.

Question 3

(a) (i) The dimension of this signal space is K = 2.

(ii) An orthonormal basis could be

f1(t) =

{√
2
T 0 ≤ t ≤ T

2

0 otherwise,
f2(t) =

{√
2
T

T
2 ≤ t ≤ T

0 otherwise.

A suitable signal set could be

s1(t) =


−
√

1
2T 0 ≤ t ≤ T

2

−
√

3
2T

T
2 ≤ t ≤ T

0 otherwise,

s2(t) =


−
√

1
2T 0 ≤ t ≤ T

2√
3
2T

T
2 ≤ t ≤ T

0 otherwise,

s3(t) = 0 s4(t) =

{√
2
T 0 ≤ t ≤ T

2

0 otherwise.

(8)

(iii) The decision regions are shown in Figure 2 (left).
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Figure 2: Decision regions for questions (a) (iii) (left) and (a) (iv) (right).

(iv) The decision regions are shown in Figure 2 (right).

(b) (i) The constellation on the left hand side has higher minimum distance, hence, it will have a
lower probability of error at high SNR.

(ii) Consider an OFDM system with N points over a channel with L inter-symbol interference
taps. The cyclic prefix is a sequence of L time-domain symbols that is added at the
beginning of each IDFT frame in order to make the linear convolution of the channel
appear as a circular convolutions. These L symbols coincide with the last L symbols of the
IDFT frame. The cyclic prefix lowers the data rate by a factor N

N+L .
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(iii) The constellation on the right has itself the best possible peak-to-average power ratio, as all
symbols have maximum energy. Therefore, this will have the lowest peak-to-average power
ratio at the output of the IDFT.

Question 4

(a) (i) The magnitude squared of the Fourier transform of the pulse |P (f)| is sketched below.

1−α
2T

1
2T

1+α
2T

A

f

|P (f)|2

(ii) By Parseval we have that the energy of the pulse Ep is

Ep =

∫
|p(t)|2dt =

∫
|P (f)|2df.

Therefore, we have that

Ep =
A

T
(1− α) +

A

T
α =

A

T
Thus, in order for Ep = 1 we need A = T .

(iii) The Nyquist criteria for no-ISI says that the overall pulse g(t) needs to be such that∑
n

G
(
f − n

T

)
= T.

For α = 0 we have that G(f) = P (f)2 is a rectangular pulse of amplitude T and duration
1
T centered at the origin. Thus, the Nyquist criterion is satisfied as the shifted pulses result
in a constant T .

Similarly, for α = 1 we have that G(f) = P (f)2 is a triangular pulse centered at the origin,
duration 2

T and maximum amplitude T . Shifting these pulses each multiple of 1
T also yields

a constant at T , and therefore satisfies the Nyquist criterion.

There is no ISI for either value of α.

(iv) For α = 0, we have that g(t) = sinc(πtT ). For α = 1, G(f) is a triangular pulse, which means
that it is the convolution of two rectangular pulses in frequency. Thus, g(t) = sinc2(πtT ).

(b) See next page
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a)i)w -w + 1
w

ii) w ->W
-
2

b) ECW(E)=Pross. (WCElOSI) -Pinsequence (W(E) lequence
=. pw + (1 -p) (w+t) as required

In equilibm- , E(WU(E))=w(z)

i w = 0 +(1-p)(w +E)
z

WvE+ X-zu +t -E
& ⑥

inpu =(z wz =
2(0)

=> wzEzP
-

w =500. 106.0.1 =50.106

pw
=1 -2p =) 0(2+) =2 -p = Y 2

2+w2 no he

-8.1516

=> 300. 10" x8.10"6 = 4.10" loss eveners/second allowed

=1/200 hours :
LieI loss per 700 hours on average)

This is now reasonable. Even withoutcongestion handone

error cause to occasional drop



2) W =

pu +(1 - p)(u +10 (
=

ry +w - pz +1 - p
-

2 20

=> pu =1 -P w = 1-p
- => -

= 20 100

Pu +20)
=1
20

-

M
I

I 10o =Tow 10.50.186

300.106. 158 =5 losses persecond.

This is reasonable, a greate
number tea would

be expected from hardware errors and so would in
being caused by congestion.


