3F4 Data Transmission 2023

Question 1

(a) The encoder has rate $R=1 / 3$ because it emits 3 code digits for every input digit. Its description in octal notation is $(11,12,17)_{8}$.
(b) The encoder has $2^{3}=8$ states. The transitions from the state ($1,1,0$) lead to:

$$
\left\{\begin{array}{l}
\text { state }(0,1,1) \text { for input } 0 \text { with corresponding outputs }(0,1,0) \\
\text { state }(1,1,1) \text { for input } 1 \text { with corresponding outputs }(1,0,1)
\end{array}\right.
$$

(c) See attached Viterbi algorithm with computed Hamming distance metrics. The recovered maximum likelihood (ML) code sequence is $111,110,101,000,000,111,110,101$ corresponding to the information sequence $1,1,1,1,1$. The solution is unique as there are no ties on the winning path.
(d) (a)

$$
\begin{aligned}
\mathrm{P}(U=1) & =\frac{\sum_{i, j \text { such that } u=1} \alpha_{i} \gamma_{i j} \beta_{j}}{\sum_{i, j} \alpha_{i} \gamma_{i j} \beta_{j}} \\
& =\frac{3+2+5+2+4+2+1+3}{1+3+4+2+1+5+2+2+3+4+6+2+3+1+5+3} \\
& =\frac{22}{47}=0.468
\end{aligned}
$$

(b)

$$
\begin{aligned}
\mathrm{P}\left(X_{2}=1\right) & =\frac{\sum_{i, j \text { such that } x_{2}=1} \alpha_{i} \gamma_{i j} \beta_{j}}{\sum_{i, j} \alpha_{i} \gamma_{i j} \beta_{j}} \\
& =\frac{3+2+1+2+4+6+3+5}{47}=\frac{26}{47}=0.553
\end{aligned}
$$

(e) The encoder is catastrophic because its connection polynomials are $1+D^{3}, 1+D^{2}$ and $1+D+$ $D^{2}+D^{3}$ which are all divisible by $1+D$ in binary. According to the Massey \& Sain theorem, the greatest common divisor of the connection polynomials must be of the form D^{ℓ} for an encoder not to be catastrophic. For this encoder, an input sequence of all ones corresponding to a D transform of $\frac{1}{1+D}=1+D+D^{2}+D^{3}+\ldots$ would result in a finite Hamming weight sequence on all 3 outputs and hence an overall finite Hamming weight path, so that a finite number of errors may result in an infinite number of decoding errors.

Figure 1: Trellis.

Question 2

(a) The Gram-Schmidt method constructs an orthonormal basis as follows

$$
f_{1}(t)=\frac{s_{1}(t)}{\left\|s_{1}(t)\right\|}= \begin{cases}\frac{1}{\sqrt{T}} & 0 \leq t \leq T \\ 0 & \text { otherwise }\end{cases}
$$

The next signal is

$$
\begin{align*}
f_{2}(t) & =\frac{g_{2}(t)}{\left\|g_{2}(t)\right\|} \tag{1}\\
g_{2}(t) & =s_{2}(t)-\left\langle s_{2}(t), f_{1}(t)\right\rangle f_{1}(t) \tag{2}\\
& =s_{2}(t) \tag{3}
\end{align*}
$$

and thus

$$
f_{2}(t)= \begin{cases}\frac{1}{\sqrt{T}} & 0 \leq t \leq \frac{T}{2} \\ -\frac{1}{\sqrt{T}} & \frac{T}{2}<t \leq T \\ 0 & \text { otherwise }\end{cases}
$$

Similarly,

$$
\begin{align*}
f_{3}(t) & =\frac{g_{3}(t)}{\left\|g_{3}(t)\right\|} \tag{4}\\
g_{3}(t) & =s_{3}(t)-\left\langle s_{3}(t), f_{1}(t)\right\rangle f_{1}(t)-\left\langle s_{3}(t), f_{2}(t)\right\rangle f_{2}(t) \tag{5}\\
& =s_{3}(t) \tag{6}
\end{align*}
$$

since they are orthogonal. Thus

$$
f_{3}(t)= \begin{cases}\frac{1}{\sqrt{T}} & 0 \leq t \leq \frac{T}{4} \\ -\frac{1}{\sqrt{T}} & \frac{T}{4}<t \leq \frac{T}{2} \\ \frac{1}{\sqrt{T}} & \frac{T}{2}<t \leq \frac{3 T}{4} \\ -\frac{1}{\sqrt{T}} & \frac{3 T}{4}<t \leq T \\ 0 & \text { otherwise. }\end{cases}
$$

Therefore, the dimension is $K=3$. The signal set is orthogonal.
(b) The transmission rate is $R_{b}=\frac{1}{T} \log _{2} 3 \mathrm{bits} / \mathrm{s}$.
(c) The vector representation is

$$
\begin{equation*}
s_{1}=(A \sqrt{T}, 0,0), s_{2}=(0, A \sqrt{T}, 0), s_{3}=(0,0, A \sqrt{T}) \tag{7}
\end{equation*}
$$

The average energy is $E_{s}=A^{2} T$ and the minimum distance is $2 A^{2} T$ since all constellation points are at the same distance.
(d) Since the signal set is orthogonal, the optimal detector is formed by a bank of correlators (or matched filter), followed by the rule

$$
\hat{m}=\underset{i=1,2,3}{\arg \max } y_{i}
$$

where y_{i} is the output of the i th correlator.
(e) All are equally vulnerable, since the signal set is orthogonal and all non-zero coordinates are the same.
(f) The union bound states that

$$
p_{e} \leq \frac{1}{M} \sum_{m=1}^{M} \sum_{m^{\prime} \neq m} Q\left(\sqrt{\frac{\left\|s_{m}-s_{m^{\prime}}\right\|^{2}}{2 N_{0}}}\right) .
$$

Since the signal set is orthogonal, and all signals are at the same distance, the above bound becomes

$$
p_{e} \leq(M-1) Q\left(\sqrt{\frac{d_{\min }^{2}}{2 N_{0}}}\right)=2 Q\left(\sqrt{\frac{E_{s}}{N_{0}}}\right)
$$

(g) The bound is valid at high SNR, as this is when the individual pairwise error events dominate.

Question 3

(a) (i) The dimension of this signal space is $K=2$.
(ii) An orthonormal basis could be

$$
f_{1}(t)=\left\{\begin{array}{ll}
\sqrt{\frac{2}{T}} & 0 \leq t \leq \frac{T}{2} \\
0 & \text { otherwise },
\end{array} \quad f_{2}(t)= \begin{cases}\sqrt{\frac{2}{T}} & \frac{T}{2} \leq t \leq T \\
0 & \text { otherwise }\end{cases}\right.
$$

A suitable signal set could be
$s_{1}(t)=\left\{\begin{array}{ll}-\sqrt{\frac{1}{2 T}} & 0 \leq t \leq \frac{T}{2} \\ -\sqrt{\frac{3}{2 T}} & \frac{T}{2} \leq t \leq T \\ 0 & \text { otherwise },\end{array} \quad s_{2}(t)=\left\{\begin{array}{ll}-\sqrt{\frac{1}{2 T}} & 0 \leq t \leq \frac{T}{2} \\ \sqrt{\frac{3}{2 T}} & \frac{T}{2} \leq t \leq T \\ 0 & \text { otherwise },\end{array} \quad s_{3}(t)=0 \quad s_{4}(t)= \begin{cases}\sqrt{\frac{2}{T}} & 0 \leq t \leq \frac{T}{2} \\ 0 & \text { otherwise. }\end{cases}\right.\right.$
(iii) The decision regions are shown in Figure 2 (left).

Figure 2: Decision regions for questions (a) (iii) (left) and (a) (iv) (right).
(iv) The decision regions are shown in Figure 2 (right).
(b) (i) The constellation on the left hand side has higher minimum distance, hence, it will have a lower probability of error at high SNR.
(ii) Consider an OFDM system with N points over a channel with L inter-symbol interference taps. The cyclic prefix is a sequence of L time-domain symbols that is added at the beginning of each IDFT frame in order to make the linear convolution of the channel appear as a circular convolutions. These L symbols coincide with the last L symbols of the IDFT frame. The cyclic prefix lowers the data rate by a factor $\frac{N}{N+L}$.
(iii) The constellation on the right has itself the best possible peak-to-average power ratio, as all symbols have maximum energy. Therefore, this will have the lowest peak-to-average power ratio at the output of the IDFT.

Question 4

(a) (i) The magnitude squared of the Fourier transform of the pulse $|P(f)|$ is sketched below.

(ii) By Parseval we have that the energy of the pulse E_{p} is

$$
E_{p}=\int|p(t)|^{2} d t=\int|P(f)|^{2} d f
$$

Therefore, we have that

$$
E_{p}=\frac{A}{T}(1-\alpha)+\frac{A}{T} \alpha=\frac{A}{T}
$$

Thus, in order for $E_{p}=1$ we need $A=T$.
(iii) The Nyquist criteria for no-ISI says that the overall pulse $g(t)$ needs to be such that

$$
\sum_{n} G\left(f-\frac{n}{T}\right)=T
$$

For $\alpha=0$ we have that $G(f)=P(f)^{2}$ is a rectangular pulse of amplitude T and duration $\frac{1}{T}$ centered at the origin. Thus, the Nyquist criterion is satisfied as the shifted pulses result in a constant T.
Similarly, for $\alpha=1$ we have that $G(f)=P(f)^{2}$ is a triangular pulse centered at the origin, duration $\frac{2}{T}$ and maximum amplitude T. Shifting these pulses each multiple of $\frac{1}{T}$ also yields a constant at T, and therefore satisfies the Nyquist criterion.
There is no ISI for either value of α.
(iv) For $\alpha=0$, we have that $g(t)=\operatorname{sinc}\left(\frac{\pi t}{T}\right)$. For $\alpha=1, G(f)$ is a triangular pulse, which means that it is the convolution of two rectangular pulses in frequency. Thus, $g(t)=\operatorname{sinc}^{2}\left(\frac{\pi t}{T}\right)$.
(b) See next page
a) i) $\omega \rightarrow \omega+\frac{1}{\omega}$
ii) $\omega \rightarrow \frac{\omega}{2}$
b)

$$
\begin{aligned}
E\left(\omega\left(\epsilon^{\prime}\right)\right) & =P_{\text {coss }} \cdot\left(\omega\left(t^{\prime}\right) \mid \text { (x) }\right)+P_{\text {insequare }}\left(\left.\omega\left(\epsilon^{\prime}\right)\right|_{\text {in }}\right. \\
& =P \frac{\omega}{2}+(1-P)\left(\omega+\frac{1}{\omega}\right) \text { as revue }
\end{aligned}
$$

In equilibin-, $E\left(\omega\left(E^{\prime}\right)\right)=\omega(E)$

$$
\begin{aligned}
i & \omega
\end{aligned} \begin{aligned}
& \frac{p \omega}{2}+(1-p)\left(\omega+\frac{1}{\omega}\right) \\
\omega & =\frac{p}{2}+y-\frac{p \omega}{2}+\frac{1}{\omega}-\frac{p}{\omega}
\end{aligned}
$$

i $\quad \frac{P \omega}{2}=\frac{1-P}{\omega} \Leftrightarrow \omega^{2}=\frac{2(1-P)}{p}$

$$
\Rightarrow \quad \omega=\sqrt{\frac{2(1-p)}{p}}
$$

$$
\begin{aligned}
& w=500 \cdot 10^{6} \cdot 0 \cdot 1=50 \cdot 10^{6} \\
& p \omega^{2}=2-2 p \Rightarrow p\left(2+w^{2}\right)=2 \Rightarrow p=\frac{2}{2+\omega^{2}} \approx \frac{2}{\omega^{2}} \\
&
\end{aligned}
$$

$\Rightarrow 500.10^{6} \times 8.10^{-16}=4.10^{-7}$ loss events $/$ second allowed $\approx 1 / 700$ hows
(ie 1 loss per 700 hows on average)
This is nor recyo-able. Ever wilber congestion handure enron cause te occasional drop
c)

$$
\begin{aligned}
& w=p \frac{\omega}{2}+(1-p)\left(\omega+\frac{1}{20}\right) \\
&=\frac{p \omega}{2}+y-\frac{p \omega}{2}+\frac{1-p}{20} \\
& \Rightarrow \frac{p \omega}{2}=\frac{1-p}{20} \Rightarrow \omega=\frac{1-p}{10 p} \\
& p\left(\frac{\omega}{2}+\frac{1}{20}\right)=\frac{1}{20} \\
& p \approx \frac{1}{10 \omega} \approx \frac{1}{10} \cdot 50 \cdot 10^{6}=10^{-8} \\
& 500 \cdot 10^{6} \cdot 10^{-8}=5 \text { losses pes secoul. }
\end{aligned}
$$

This is reasondle, a greate numbe Atan woill be expecced form haid ware ewas and so would be being caused by congestion.

