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Crib

1. (a) The encoder has rate R = 1/2 because it emits 2 code digits for every input digit.

(b) The octal description is (6, 5)8.

(c) Statement (i) is compatible: it describes another input sequence with the same probability as the
decoded sequence. There can be ties in the Viterbi algorithm.

Statement (ii) is incompatible: if sequence 0, 0, 0, 1 has a higher a-posteriori probability than the
sequence 1, 1, 0, 1, the Viterbi algorithm would have picked it.

Statement (iii) is compatible: although the winning sequence in the Viterbi algorithm starts with
a 1, it is possible that the probability of a zero at the start of the sequence is larger than the
probability of a one. The Viterbi algorithm is not bit error optimal.

(d) The encoder polynomials are 1 +D and 1 +D2. In binary, (1 +D)2 = 1 + (1 + 1)D+D2 = 1 +D2

hence the greatest common divisor of the two polynomials 1 + D is not of the form D` and the
encoder is catastrophic as per Massey and Sain’s theorem.

(e) We draw the state diagram with the zero state split into an “input” and “output” state, to help us
count the detours from the all zero code sequence:
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11

out
JND2

JD

JND
JD

JND JD2

JN

We then compute the transfer function either using Mason’s gain formula (which can be done by
inspection) or by setting up a system of equations and resolving it (which requires a long algebraic
derivation) to obtain

T (J,N,D) =
J3ND4(1− JN) + J4N2D6

1− JN − J2ND2 − J3N2D4 + J3N2D2

= J3ND4(1− JN + JND2)
(
1 + JN + J2ND2 + J3N2D4 − J3N2D2 +O(J2N2D0)

)
The lowest degree term of this equation in terms of D is D4, hence dfree = 4. One can easily verify

that the input sequence 1, 1, 0 gives the interleaved output sequence 1, 1, 1, 0, 0, 1 (i.e., X(1) = 1, 1, 0
and X(2) = 1, 0, 1), which has weight 4.

(f) A systematic encoder can never be catastrophic. Catastrophic encoders map an infinite weight
input sequence to a finite weight code sequence. Since half of the outputs bits at the output of
this encoder are the input bits, any infinite weight input sequence would automatically result in an
infinite weight output sequence.
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(g) We observe in the diagram that X(1)(D) = U(D) and{
V (D) = U(D) +DV (D)

X(2)(D) = V (D) +D2V (D)

and hence, carefully manipulating these equations (remember that 1 + 1 = 0), we get

X(2)(D) = (1 +D2)V (D) =
1 +D2

1 +D
U(D) = (1 +D)U(D).

Despite the appearance of being a 4 state encoder, this encoder in fact is a two state encoder where
the sequence X(2) consists of the sum of two consecutive inputs, i.e.,

X
(2)
k = Uk + Uk−1 = X

(1)
k +X

(1)
k−1.

(h) We note that the code sequences of the two encoders are the same because both encoders must

satisfy X
(2)
k = X

(1)
k +X

(1)
k−1 (with initial condition X

(1)
−1 = 0) based on our response to the previous

question.

The code sequences in (i) satisfy this constraints and are hence valid output sequences for both
encoders.

The code sequences in (ii) are valid output sequences for the encoder in Fig. 1(a). Despite what
we said above about code sequences being the same for both encoders, this is not a valid output
for the encoder in Fig. 1(b) because of the zero termination bits which should have resulted in

X
(1)
6 = X

(1)
7 = 0, which is not the case for this example.

The sequences if (iii) are not valid output sequences for any of the two encoders because, for

example, X
(2)
1 = 0 6= X

(1)
1 +X

(1)
0 = 1.

2. (a) The signal set is orthogonal and of dimension K = 4. An orthonormal basis is simply the same
signal set, divided by 2

A
√
T

. Thus, the amplitude of each of the pulses of the orthonormal basis

becomes 2√
T

.

(b) The signal set has four symbols, each labelled with 2 bits. Therefore, the rate is 2
T bits/s.

(c) We know that Es = 2Eb and that each symbol has the same energy Es = A2. Thus,

s1 = (
√

2Eb, 0, 0, 0), s2 = (0,
√

2Eb, 0, 0), s3 = (0, 0,
√

2Eb, 0), s4 = (0, 0, 0,
√

2Eb) (1)

(d) The distance between each pair is the same, hence the minimum distance dmin is

dmin = 4Eb. (2)

(e) The optimal receiver projects the received y(t) signal onto each of the elements of the orthonormal
basis and then performs detection based on those projections y1, . . . , yK . Detection is based on the
MAP rule (since we have non-equiprobable symbols). The output of the detector is the symbol
x ∈ {s1, . . . , sM} such that

x̂ = arg max
i∈{1,...,M}

PY |X(y|si)PX(si) (3)

= arg max
i∈{1,...,M}

1

(
√
πN0)M

e
− y21+···+y2M

N0 e
− Es

N0 e
2
√
Esyi
N0 · PX(si) (4)

= arg max
i∈{1,...,M}

2
√
Es

N0
yi + logPX(si) (5)
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Figure 1: Bank of cross-correlators.

(f) Let the AWGN be n(t) and n′(t) = n(t) −
∑K

k=1 nkφk(t) be the noise outside the signal space,
where nk is the noise projection onto the k-th element of the orthonormal basis of the signal space
φk. The property states that n′(t) and y1, . . . , yK are independent, which can be shown by showing
that E[n′(t)nk] are uncorrelated, and since they are Gaussian, they are independent.

(g) Assuming s1 was transmitted, an error occurs if y1 is not the largest entry in vector (y1, y2, . . . , yM ).
Therefore,

pe = P
[
{Y1 ≤ Y2} ∪ {Y1 ≤ Y3} ∪ · · · ∪ {Y1 ≤ YM}

]
(6)

= P
[
{
√
Es +N1 ≤ N2} ∪ {

√
EsN1 ≤ N3} ∪ · · · ∪ {

√
Es +N1 ≤ NM}

]
(7)

≤ P
[√
Es +N1 ≤ N2

]
+ · · ·+ P

[√
Es +N1 ≤ NM

]
(8)

= (M − 1)P
[
N2 −N1 ≥

√
Es

]
(9)

(h) Since N2−N1 is a Gaussian random variable with zero mean and variance N0, the probability term
in (9) is a Gaussian tail function. We thus have that

pe ≤ (M − 1)Q

(√
Es

N0

)
. (10)

3. (a) The dimension of the signal space is K = 2.

(b) The points are Aejφ, Aej(π−φ), Aej(π+φ), Aej(2π−φ). Thus, the vector representation is

(A cos θ,A sin θ), (−A cos θ,A sin θ), (−A cos θ,−A sin θ), (A cos θ,−A sin θ)

The average energy per bit is Eb = A2

2 , as every point has the same energy.

(c) The optimal decision region are the x−y axes themselves.

(d) i. The received SNR is 2|h|2A2

N0
.

ii. The error probability is
pe = pe,r + pe,i − pe,rpe,i

where pe,r, pe,i are the error probabilities for the real/imaginary axes, respectively. Thus if we
let n = nr + jni

pe,r = P[hA cos θ + nr < 0] = Q

(√
2h2A2 cos2 θ

N0

)
= Q

(√
4h2 cos2 θ

Eb
N0

)
(11)

pe,i = P[hA sin θ + ni < 0] = Q

(√
2h2A2 sin2 θ

N0

)
= Q

(√
4h2 sin2 θ

Eb
N0

)
(12)
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Finally

pe = Q

(√
4h2 cos2 θ

Eb
N0

)
+Q

(√
4h2 sin2 θ

Eb
N0

)
−Q

(√
4h2 cos2 θ

Eb
N0

)
Q

(√
4h2 sin2 θ

Eb
N0

)
iii. At high SNR we have that the error probability at receiver 1 is approximated by the estimate

provided by the union bound, which is in turn dominated by the error probability in the
imaginary component since sin θ < cos θ for θ < π

4

pe,1 ≈ Q

(√
4h21 cos2 θ

Eb
N0

)
+Q

(√
4h21 sin2 θ

Eb
N0

)
≈ Q

(√
4h21 sin2 θ

Eb
N0

)
at high SNR

(13)

pe,2 = Q

(√
4h22 cos2 θ

Eb
N0

)
(14)

We find θ by equating the terms inside the Q-functions,

4h22 cos2 θ = 4h21 sin2 θ =⇒ θ = arctan
h2
h1

= arctan 0.25 = 14 deg.

4. (a) The error probability can be expressed as

pe =
1

M

M∑
m=1

P
[ ⋃
m′ 6=m

{x̂(Y ) = sm′}
∣∣∣X = sm

]
(15)

≤ 1

M

M∑
m=1

∑
m′ 6=m

P[x̂(Y ) = sm′ |X = sm] (16)

where the last line follows from the union bound and where P[x̂(Y ) = sm′ |X = sm] = P (sm →
sm′) is the probability of deciding in favour of sm′ when sm was sent.

(b) We have that

P[x̂(Y ) = sj |X = si] = P[‖Y − sj‖2 < ‖Y − si‖2|X = si] (17)

= P[‖si − sj + N‖2 ≤ ‖N‖2|X = si] (18)

= P
[
Zi,j ≤ −‖si − sj‖2|X = si

]
(19)

where

Zi,j = 2
K∑
k=1

(si,k − sj,k)Nk.

Since Zi,j is a weighted sum of independent Gaussian random variables, it is Gaussian. We proceed
to calculate the mean and variance. The mean is

E[Zi,j ] = 2

K∑
k=1

(si,k − sj,k)E[Nk] = 0. (20)

The variance is equal to

E[Z2
i,j ] = E

[
2

K∑
k=1

(si,k − sj,k)Nk · 2
K∑
`=1

(si,` − sj,`)N`

]
(21)

= 4

K∑
k=1

K∑
`=1

(si,k − sj,k)(si,` − sj,`)E[NkN`] (22)

= 2N0‖si − sj‖2 (23)
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Thus the pairwise error probability is

P
[
Zi,j ≤ −‖si − sj‖2|X = si

]
= P

[
Zi,j√

2N0‖si − sj‖2
≤ − ‖si − sj‖2√

2N0‖si − sj‖2

]
(24)

= Q

(√
‖si − sj‖2

2N0

)
. (25)

(c) At SNR, since the Q-function decays exponentially and the terms in sum in (16) only depend on
the distance between pairs of constellation points, the overall sum in (16) is dominated by the
terms at minimum distance.

(d) In distance vector protocols nodes broadcast shortest paths to destinations to their neighbours. For
example RIP, which uses Distributed Bellman-Ford. In link-state protocols the nodes broadcast
distances to their neighbours to whole network, e.g., OSPF, which uses Dijkstra.

In link-state protocols each node is able to build a model of the entire network and use the very
efficient Dijksta algorithm to find shortest paths. They require the ability for each node to broad-
cast information to every other node in the network, which implies a significant communication
overhead. Even though Dijkstra is efficient the fact that it has to be run at all nodes is a com-
putational burden. The advantage is that correct routes are calculated immediately; when the
link between C and D fails C broadcasts to A,B and D that it no longer has a direct connection
to D. All nodes then run Dijkstra independently and arrive a correct set of shorted paths. The
advantage of distance vector protocols is that the communication only has to be local. Each node
maintains a table of shortest paths to each other node in the network, which it shares with its
neighbours. Convergence can be slow however, as in the example. Before the failure A has routes
of 4 to D, 20 to B and 2 to C. When the link C-¿D fails C recalculates it’s routes, giving a route
of 6 to D, via 8, which it advertises to A. A now calculates its shortest path to D to be 8, via C
and then C calculates a shortes path of 10 to D, via A etc This continues for a few cycles until
A calculates a route of 20 to D via C at which point the path of 19 via B is preferred. Until this
point packets are sent back and forth between A and C.
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