
3F4 Data Transmission

Engineering Tripos 2020/21 – Solutions

Question 1

(a) i) The first basis function can be chosen as s1(t) scaled to have unit energy, and we use Gram-
Schmidt to find the second basis function: [30%]

φ1(t) =
1√
E
s1(t), φ2(t) =

s2⊥(t)

‖s2⊥(t)‖
,

where

s2⊥(t) = s2(t)− 〈φ1, s2〉φ1(t) = s2(t) +

√
E

2
φ1(t)

=


1
2

√
E
2T , 0 ≤ t ≤ 2T,

−
√

E
2T , 2T < t ≤ 3T.

Since ‖s2⊥(t)‖ =
√

3E/2, we have

φ2(t) =


√

1
6T , 0 ≤ t ≤ 2T,

−
√

2
3T , 2T < t ≤ 3T.

Using these basis functions, we have s1(t) =
√
E φ1(t), and s2(t) = −

√
E/4φ1(t) +

√
3E/4φ2(t)

ii) In the two-dimensional signal space, the signal vectors are:

s1 = [
√
E, 0], s2 = [−

√
E/4,

√
3E/4].

The optimal receiver first computes r = [r1, r2], where

r1 = 〈y(t), φ1(t)〉, r2 = 〈y(t), φ2(t)〉.

The optimal detector then uses the minimum-distance rule: [20%]

x̂ =

{
s1, if ‖r − s1‖2 ≤ ‖r − s2‖2,
s2, otherwise.

Note: The choice of orthonormal basis in part (i) is not unique. Each choice will correspond to
a different pair (s1, s2), each of these pairs will have the same value for the distance ‖s1, s2‖.

iii) If message i ∈ {1, 2} is transmitted,

r1 = si,1 + n1, r2 = si,2 + n2.

The decision boundary is a line perpendicular to (s1−s2). Detection is affected only by the noise
component in the direction (s1 − s2). Since the AWGN noise is rotationally invariant, the noise
component in the direction is N (0, N0/2). Denoting this random variable by N ′, the probability
of error is [20%]

Pe = P

(
N ′ >

‖s1 − s2‖
2

)
= P

(
N ′ >

1

2

√
3E

)
= Q

(√
3E

2N0

)
.
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(b) Since p(t) is real and even, so is P (f). We have g(t) = p(t) ? p(−t) = p(t) ? p(t), which implies
G(f) = P (f)2. We plot G(f), G(f − 1/T ) and G(f + 1/T ) in the figure below. [30%]
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G(f) G(f − 1/T )G(f + 1/T )

We see that
∞∑

n=−∞
G
(
f − n

T

)
= 6T + 5T + T = 12T. (1)

The Nyquist pulse criterion says that id
∑

nG
(
f − n

T

)
= T , then g(nT ) = 1 for n = 0, and 0

for other integers n. The RHS in (1) is scaled by a factor of 12, therefore g(nT ) = 12 for n = 0,
and 0 otherwise.

Therefore, from the result in (ii), the filter output is

r(nT ) = Xng(nT ) =

{
12Xn, n = 0

0, n = ±1,±2, . . .

Assessor’s comment: Some got into a tangle in the Gram-Schmidt for part (a).(i) (possibly due
to time pressure) as the calculation was a bit involved; others erroneously gave three basis functions,
or just scaled the given functions to have unit energy. Most did well on parts (a).(ii) and (a).(iii),
which asked for the optimal receiver and its error probability. Part (b) on Nyquist pulse criterion
had several good answers, but some tried to do it via time domain, which is more time consuming.
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Question 2

(a) i) The channel output y(t) =
∑

kXk[p(t − k) − 0.4p(t − k − 0.5) + 0.1p(t − k − 1.5)] + n(t).
Passing this through a filter with impulse response p(−t), we obtain [10%]

r(t) =
∑
k

Xk[p(t− k) − 0.4p(t− k − 0.5) + 0.1p(t− k − 1.5)] ? p(−t) + n(t) ? p(−t)

=
∑
k

Xk[g(t− k) − 0.4g(t− k − 0.5) + 0.1g(t− k − 1.5)] + ñ(t)

ii) The pulse g(t) = p(t) ? p(−t) =
∫ t
0 p(τ)p(τ − t)dτ is: [25%]

t

g(t)

−1

1

1

Since g(t) is non-zero only for −1 < t < 1, the sampled filter output is

r(m) =
∑
k

Xk[g(m− k) − 0.4g(m− k − 0.5) + 0.1g(m− k − 1.5)] + ñ(m)

= Xm[g(0)− 0.4g(−0.5)] + Xm−1[−0.4g(0.5) + 0.1g(−0.5)] + Xm−2[0.1g(0.5)] + ñ(m)

= 0.8Xm − 0.15Xm−1 + 0.05Xm−2 + ñ(m)

iii) The channel impulse response is g = [g0 = 0.8, g1 = −0.15, g2 = 0.05]. Let the 3-tap filter
be h = [h0, h1, h2]. Then, the filter output for m ≥ 0 is [25%]

ym = Xmf0 +

4∑
j=1

Xm−jfj +

2∑
i=0

hinm−i,

where fj =
∑2

i=0 higj−i.

To obtain the three tap ZF equalizer we solve:

f0 = h0g0 = 1 ⇒ h0 = 1/0.8 = 1.25,

f1 = h0g1 + h1g0 = 0 ⇒ h1 = −h0g1/g0 = 0.2344,

f2 = h0g2 + h1g1 + h2g0 = 0 ⇒ h2 = −(h0g2 + h1g1)/g0 = −0.0342

With this choice, we have f3 = h1g2 + h2g1 = 0.0168 and f4 = h2g2 = −0.0017.

Therefore, the filter output is

Ym = Xm + 0.0168m−3 − 0.0017Xm−4︸ ︷︷ ︸
residual interference

+

2∑
i=0

hinm−i︸ ︷︷ ︸
additive noise

.

iv) The noise enhancement factor is (h20 + h21 + h22) = 1.619. The MMSE equaliser achieves
the optimal tradeoff between residual interference and noise enhancement by minimizing the
expected squared error between Xm and the equaliser estimate X̂m. [10%]

3



(b) i) For the Bellman-Ford algorithm will find all minimum cost paths within two iterations, each
node should be at most two links away from every other node. For large N , this can be achieved
by the following ‘hub and spoke’ configuration: [15%]

1

2

3

456

N

(c) ii) The Bellman-Ford algorithm will be guaranteed to take (N − 1) iterations if there is at least
one pair of nodes for which every path between them has (N − 1) links. This can be achieved
(for example) by arranging the nodes in a line configuration, so that the nodes at the two ends
are separated by (N − 1) links. [15%]

1 2 3 N − 1 N

Note: Other valid configurations may be possible for (b).(i) and (b.(ii).

Assessor’s comment: Part (a).(i) was done well by most. Many made mistakes in part (a).(ii)
figuring out which samples of g(·) played a role in determining the ISI for r(m). For part (b).(i), a
common mistake was giving a fully connected network as an example for which the algorithm always
converges in two steps. Note that a (long) indirect path could be the one with minimum cost even
in a fully connected network, and this could potentially take more than two iterations to find. Some
gave examples that worked only for a specific, small value of N , though the question specifies that
N is large.
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Question 3

(a) i) The squared magnitude of each of the four inner symbols is (d/2)2 + (d/2)2 = d2/2. For each
of the eight outer symbols, the squared magnitude is (d/2)2 + (3d/2)2 = 5d2/2. Therefore the
average symbol energy is [15%]

Es =
1

12

(
4 · d

2

2
+ 8 · 5d2

2

)
=

11

6
d2.

Since each symbol carries log2 12 bits, the average energy per symbol is Eb = 11
6 log 12d

2.

ii) The decision boundaries are as shown in the figure below. [10%]

d

d
Re(X)

Im(X)

p1

p2

iii) The outer symbols will all have the same probability of detection error, denoted by Pe,outer.
Similarly, the inner ones will have the same probability of detection error, denoted by Pe,inner.
First consider an inner symbol, say (d/2, d/2). With (NR, NI) ∼iid N (0, N0/2), we have [25%]

Pe,inner = P

({d
2

+NR < 0
}
∪
{d

2
+NR > d

}
∪
{
d <

d

2
+NI < 0

}
∪
{d

2
+NI > d

})
≤ P (NR < −d/2) + P (NR > d/2) + P (NI < −d/2) + P (NI > d/2) = 4Q

(√
d2/(2N0)

)
.

The last equality is obtained by standardising each of the normals by dividing both sides of the
inequality by

√
N0/2.

We now bound Pe,outer by considering the outer symbol p1 = (3d/2, d/2). Denoting by Ñ the
component of the noise in the direction from p1 to p2, we have

Pe,outer = P
({
NR < −d/2

}
∪
{
NI < −d/2

}
∪
{
Ñ >

√
2d/2

})
≤ P (NR < −d/2) + P (NI < −d/2) + P (Ñ >

√
2d/2).

Due to the rotational invariance of Gaussian Ñ ∼ N (0, N0/2) (see Examples Paper 2, where this
is shown by expressing Ñ as a linear combination of NI and NR). Standardising each of the
normals by dividing

√
N0/2, we therefore obtain

Pe,outer ≤ 2Q
(√

d2/(2N0)
)

+Q
(√

d2/N0

)
.

Combining the bounds above, we can bound the overall probability of error as

Pe =
8

12
Pe,outer +

4

12
Pe,inner ≤

8

3
Q
(√

d2/(2N0)
)

+
2

3
Q
(√

d2/(N0)
)

=
8

3
Q
(

3 log 12

11

Eb
N0

)
+

2

3
Q
(

6 log 12

11

Eb
N0

)
For the last equality, we have expressed d2 in terms of Eb using Eb = 11

6 log 12d
2.
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(b) i) The optimal decision rule for X given Y = y is the MAP decision rule, which in this case is:
decode 0 if P (X = 0)P0(y) > P (X = 1)P1(y), and decode 1 otherwise. [20%]

X̂MAP (y) =

{
0, if (1− p) · λy0e−λ0 ≥ p · λ

y
1e
−λ1

1, otherwise.

Simplyifying, we obtain

X̂MAP (y) =

0, if 0 ≤ y ≤
λ1−λ0+ln 1−p

p

ln
λ1
λ0

,

1, otherwise.

The threshold T =
λ1−λ0+ln 1−p

p

ln
λ1
λ0

.

[Since y is a positive integer, the decision rule will decode 0 for 0 ≤ y ≤ bT c, and decode 1 for
y ≥ bT c+ 1.]

ii) For λ1 = 10, λ0 = 2 and p = (1 − p), we have T = 8
ln 5 = 4.9707. Since y is an integer, the

decision rule reduces to [10%]

X̂MAP (y) =

{
0, if 0 ≤ y ≤ 4

1, y ≥ 5.

iii) The probability of error is [20%]

Pe = P (X = 0)P (Y > T | X = 0) + P (X = 1)P (Y ≤ T | X = 1)

= (1− p)e−λ0
∞∑

r=bT c+1

λr0
r!

+ pe−λ1
bT c∑
r=0

λr1
r!

Assessor’s comment: In part (a).(ii), some made mistakes in sketching the optimal decision
boundaries for the outer points. Many also gave rather loose (or sometimes, incorrect) upper bounds
for the error probability in (a).(iii); a common mistake was in analysing the error probability for an
outer point due to the neighbouring constellation point on the diagonal. Part (b) on MAP detection
over a Poisson channel was generally well done.
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Question 4

(a) The number of subcarriers N = bandwidth
spacing = 10×106

4000 = 2500.

Each OFDM block is transmitted in T + ∆ seconds, where T = NTs = 1
spacing = 250µs, and the

guard interval ∆ = 10µs. [20%]

The number of subcarriers carrying user information is 0.9N . Each 16-QAM symbol corresponds
to 4 bits, and there is a rate 1/2 error correcting code. Hence

Ruser =
0.9N · 4 · 1/2

(T + ∆)
= 17.308× 106 bits per s.

Denoting the length of the cyclic prefix by L, the length of the guard interval ∆ = LTs, where
Ts = 250

2500 = 0.1µs. Therefore

L =
∆

Ts
= 100.

(b) i) The rate of the code is 1/2, as two coded bits are produced for each input bit. [5%]

ii) The state diagram is shown below, with a transitions corresponding to 0 inputs by solid lines,
and transitions corresponding to 1 inputs by dashed lines. [20%]

0, 0

0, 1

1, 1

1, 0

1, 1 1, 0

0, 0
0, 1

0, 0

0, 1

1, 0

1, 1

ii)

The following trellis diagram shows the code bits along each transition, along with the Hamming
distance from the corresponding bits in y

(1, 1)

(1, 0)

(0, 1)

(0, 0)

A2

A4

0,0 (0) A1

0,1
(1)

A3

0,0 (1) B1

0,1
(2)

B3

1,
1
(1
)

B2

1,0
(0)

B4

0,0 (1) C1

0,1
(2)

C3

1,
1
(1
)

1,0
(0)

1,
1
(1
)

C2

1,0
(0)

C4

0,
0
(1
)

0,1 (2)

0,0 (1) D1

0,1
(0)

D3

1,
1
(1
)

1, 0
(2)

1,
1
(1
)

D2

1,0
(2)

D4

0,
0
(1
)

0,1 (0)

y → 0, 0 1, 0 1, 0 0, 1

7



The cumulative distance denoted by d(·, ·) from the origin to the nodes in each stage: [45%]

Stage A) d(00, A1) = 0, d(00, A3) = 1
Stage B) d(00, B1) = 1, d(00, B2) = 2, d(00, B3) = 2, d(00, B4) = 1
Stage C) d(00, C1) = 2(via B1), d(00, C2) = 2(via B4), d(00, C3) = 2(via B2), d(00, C4) =
2 (via B3)
Stage D) d(00, D1) = 3(via C1 or C2), d(00, D2) = 3(via C3 or C4), d(00, D3) = 2(via C1), d(00, D4) =
2(via C4)

There are two distinct paths each of whose codewords have distance 2 from y:

00−A1 −B1 − C1 −D3 ↔ x̂1 = 00 00 00 01, ŝ1 = 0001,

00−A1 −B3 − C4 −D4 ↔ x̂2 = 00 01 10 01, ŝ2 = 0111,

(c) There are two codewords which are at a distance 2 from y and no other codeword with a smaller
distance. Since the Viterbi algorithm determines a codeword closest in Hamming distance to y,
both of these are equally valid outputs of the decoder. [10%]

Assessor’s comment: The most popular question in the paper. Some candidates used the
wrong number of subcarriers to determine the OFDM symbol period in part (a), but both parts were
generally well-answered by most.
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