
3F4 Data Transmission

Engineering Tripos 2017/18 – Solutions

Question 1

(a) i) An orthonormal basis for the set of waveforms is given below. [10%]
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ii) Each waveform si(t), for i ∈ {1, 2, 3, 4}, can be expressed as si(t) = si,1f1(t) + si,2f2(t) +
si,3f3(t), where the coefficients are calculated as

si,1 =

∫
R
si(t)f1(t)dt, si,2 =

∫
R
si(t)f2(t)dt, si,3 =

∫
R
si(t)f3(t)dt.

Using this, we obtain:

s1(t) = 2 f1(t) + 2 f2(t) + 2 f3(t),

s2(t) = 2 f1(t) + 0 f2(t) + 0 f3(t),

s3(t) = 0 f1(t)− 2 f2(t)− 2 f3(t),

s4(t) = 2 f1(t) + 2 f2(t) + 0 f3(t).

iii) The receiver first computes inner product of y(t) with each of the basis functions: [25%]

r1 =

∫
R
y(t)f1(t)dt, r2 =

∫
R
y(t)f2(t)dt, r3 =

∫
R
y(t)f3(t)dt.

If x(t) = si(t), then the vector r = [r1, r2, r3] is given by

r = si + n,

where si = [si,1, si,2, si,3], and n = [n1, n2, n3]. Here

n1 =

∫
R
n(t)f1(t), n2 =

∫
R
n(t)f2(t), n3 =

∫
R
n(t)f3(t),

are zero-mean i.i.d. Gaussian random variables. (The variance is determined by the power
spectral density of n(t).)

Since the messages are equally likely, the optimal decision rule is ML or minimum-distance
decoding rule:

ŝ = arg min
i∈{1,2,3,4}

‖r − si‖2.

1



(b) i) The filter output is given by [10%]

r(t) = x(t) ? q(t) =
∑
k

Xkp(t− kT ) ? q(t)

=
∑
k

Xk

∫
R
q(u)p(t− kT − u)du =

∑
k

Xkg(t− kT )

because g(t) =
∫
R q(t)p(t− u)du.

ii) If
∑∞

k=−∞G(f − k
T ) = constant, then there will be no ISI. If the constant on the RHS equals

T , then the sampled output at time nT exactly equals Xn, for n ∈ Z. [10%]

iii) Noting that G(f) = P (f)Q(f), we have [10%]
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iv) We show below G(f) superimposed with the shifted versions G(f − 1
T ) and G(f + 1

T ). We
see that [20%]

∞∑
k=−∞

G

(
f − k

T

)
= 2T.

Therefore the sampled output at time nT equals 2Xn, for n = 0, 1, 2, . . .

f

G(f)

T

1
2T

1
T

3
2T

2
T

3
2T

−1
2T

G(f − 1
T )G(f + 1

T ) G(f − 2
T )G(f + 2

T )

Assessor’s comment: For the last part of the question, many tried to determine r(nT ) via the
time-domain expression for r(t), which can be complicated to compute. Many also made mistakes in
showing b.i) via a change of variables in the convolution integral.
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Question 2

(a) i) The corner points have energy d2 + (d/2)2 = 5d2

4 , and the two middle ones have energy d2/4.
Therefore the average energy per symbol is [15%]

Es =
1

6

[
4 · 5d2

4
+ 2 · d

2

4

]
=

11d2

12
.

The average energy per bit is

Eb =
Es

log2 6
=

11d2

12 log2 6
.

ii) The decision regions are as shown below, with the dashed lines representing the decision
boundaries.

d/2

d/2

p1 p2

iii) The detector attempts to recover the transmitted symbol X from Y = X +N , where the the
real and imaginary parts of N are i.i.d Gaussian ∼ N (0, N0/2). X is drawn uniformly from the
6-QAM constellation. [30%]

When X is one of the four corner points, say p1, the prob. of error is

P (X̂ 6= p1 | X = p1) = P ({NR >
d
2} ∪ {NI < −d

2})

= P

({
NR√
N0/2

>
d/2√
N0/2

}
∪
{

NI√
N0/2

< − d/2√
N0/2

})

≤ P
(

NR√
N0/2

>
d/2√
N0/2

)
+ P

(
NI√
N0/2

< − d/2√
N0/2

)

= 2Q
(

d√
2N0

)
.

(1)

When X is one of the two interior points, say p2, the prob. of error is

P (X̂ 6= p2 | X = p2) = P ({NR >
d
2} ∪ {NR <

−d
2 } ∪ {NI <

−d
2 })

≤ P
(

NR√
N0/2

>
d/2√
N0/2

)
+ P

(
NR√
N0/2

<
−d/2√
N0/2

)
+ P

(
NI√
N0/2

< − d/2√
N0/2

)

= 3Q
(

d√
2N0

)
.

(2)

The average probability of error is

Pe =
1

6

(
4 · 2Q

(
d√
2N0

)
+ 2 · 3Q

(
d√
2N0

))
=

7

3
Q
(

d√
2N0

)
=

7

3
Q
(√

6 log2 6

11

Eb
N0

)
,
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where the last equality is obtained using part (a).(i).

iv) Since the points on a PSK constellation are located on a circle, they have equal energy, equal
to the square of the radius. In this case, the energy is 11d2/12, so radius is

√
11/12 d. Since

adjacent points are 60◦ apart, the distance between adjacent points is
√

11/12 d. [10%]

v) The argument of the Q-function, which determines the error probability, depends on the
distance between adjacent points in the constellation. For the 6-PSK, the distance between
adjacent points is smaller than for 6-QAM, i.e.,

√
11/12 d vs d.

Each point in the 6-PSK constellation has two nearest neighbours (at distance
√

11/12 d). For
6-QAM four points have two nearest neighbours and the other two have three nearest neighbours,
at distance d. Therefore, for 6-QAM, the constant multiplying the Q function will be larger and
the argument of the Q-function is smaller. Since Q(x) decays exponentially with x2 (recall that
Q(x) ≤ e−x

2/2 for x > 0), 6-QAM will have smaller error probability (except possibly for very
small values of Eb/N0 when the exponential is very close to 1 in both cases). [15%]

(b) The optimal detection rule is the MAP rule: [20%]

X̂ = arg max
x∈{3,−1}

P (Y = y|X = x) P (X = x)

= arg max
x∈{3,−1}

e−(y−x)
2/(2σ2)P (X = x)

(3)

For x = 3, the test statistic in (3) is pe−(y−3)
2/(2σ2). For x = −1, the test statistic is (1 −

p)e−(y+1)2/(2σ2). Therefore, X̂ = 3 when

pe−(y−3)
2/(2σ2) ≥ (1− p)e−(y+1)2/(2σ2) ⇔ ln p− (y − 3)2

2σ2
≥ ln(1− p)− (y + 1)2

2σ2

⇔ ln p+
6y − 9

2σ2
≥ ln(1− p)− (2y + 1)

2σ2

⇔ y ≥ 1 +
2σ2

8
ln

(1− p)
p

.

(4)

Therefore the optimal decision rule is

X̂ =

{
A if Y ≥ T
−A if Y < T

where T = 1 + σ2

4 ln (1−p)
p .

Assessor’s comment: Generally well answered. For part (a).(v), some did not recognise that
the argument of the Q-function is the key to determining the error probability rather than the average
number of nearest neighbours.
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Question 3

(a) The state diagram of the code is shown below. Transitions due to input bit 0 are shown in solid
lines, and those due to input 1 are shown in dashed lines. The edges are labeled with the code
bits corresponding to the transitions. [15%]

0 1

00 10

11

01

(b) The state diagram with the the edges labeled with the appropriate powers of J , N , D is shown
below. [15%]

0
a

1
b

0
cJND

JND

JD2

We have

Xb = JND(Xa +Xb)

Xc = JD2Xb

Eliminating Xb, we obtain the transfer function between Xa and Xc as

Xc

Xa
=

J2ND3

1− JND
= J2ND3 + J3N2D4 + J4N2D5 + . . .

(c) Each term in the expansion of the transfer function represents a path that starts and ends at the
zero state, with at least one non-zero state in between. The exponent of J specifies the number
of branches in the path before it returns to the zero state; the exponent of D in each term
specifies the Hamming distance between the output along that path and the all-zero codeword;
the exponent of N is the total number of ones in the input along that path.

For the above code, the first term in the transfer function expansion tells us that there is one
path with two steps before it returns to the all-zero state, with a single 1 input and three 1
outputs along the path (path abc). The second term tells us that there is one path with three
branches before returning to the all-zero state, with two 1 inputs and four 1 outputs along that
path (path abbc). [20%]

(d) The free distance of a convolutional code is the minimum Hamming distance between any two
code-sequences of the convolutional code. It is given by the minimum D exponent in the transfer
function. The free distance of the above code is therefore 3. [5%]

(e) We use the Viterbi algorithm. The trellis representation of the code is shown in the Figure below.
[30%]

• The numbers on the edges indicate the distance of the output of the transition from the
corresponding bits of the received sequence (which are shown at the bottom of the trellis).
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Received
sequence
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• The numbers that are encircled at the nodes indicate the minimum distance of the corre-
sponding node from the origin (node 0).

We see that the minimum distance path is 0−B1 −B2 −A3 −B4.

The decoded sequence is 01 10 11 01.

The corresponding input sequence is 1 1 0 1.

(f) A convolutional encoder is catastrophic if there exists two (arbitrarily long) code sequences which
differ only in a small number of bits, but the corresponding two input sequences differ in an
arbitrarily large number of bits. With a catastrophic encoder, when one of these code sequences
is transmitted a small number of channel errors can lead to an arbitrarily large number of errors
in the input sequence.

(An excellent answer might give an example, like the one in the lecture notes.) [15%]

Assessor’s comment: Generally well answered. Some had trouble recalling what exactly a
catastrophic encoder meant, and just said “a code where a finite number of channel errors can cause an
infinite number of decoding errors”. Many gave the condition (in terms of the generator polynomials)
for the encoder to not be catastrophic.
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Question 4

(a) i) The bandwidth of the OFDM signal is W = N
T , where N is the number of sub-carriers, and [10%]

1
T is the spacing between sub-carriers. We are given that N = 128, and 1

T = 105 Hz.

Therefore W = 12.8 MHz.

ii) If the filter has coefficients h[0], . . . , h[L], then the output at time k is

y[k] = h[0]x[k] +
L∑
`=1

h[k]x[k − `]. (5)

The duration of the guard interval is [10%]

∆ =
LT

N
=

40× 10−5

128
= 3.125× 10−6 sec.

iii) In a time interval (T + ∆), the OFDM signal carries N 16-QAM symbols, Therefore, the
coded bit rate of the OFDM signal is [25%]

N × 4

T + ∆
symbols /sec =

128× 4

13.125× 10−6
bits/sec = 39.0095 Mbits/sec.

Since we use a code of rate 3/4, the user data rate is

3

4
× 39.0095 Mbits/sec = 29.2571 Mbits/sec.

iii) The role of the cyclic prefix is to eliminate inter-symbol interference between adjacent sub-
carriers. To avoid ISI, we want the OFDM information sequence in the frequency domain to be
each multiplied by a single DFT coefficient of the channel filter. Equivalently, the time-domain
version of the information sequence should undergo circular convolution with the channel filter.
Since the channel actually acts on the input via linear convolution in the time domain (as per
(5)), the cyclic prefix mimics circular convolution by transmitting the appropriate symbols in
a guard interval before the block of information symbols is transmitted in the OFDM symbol
period. [25%]

In particular, just before transmitting the block of time-domain symbols x[0], . . . , x[N − 1] over
a duration of length T , we transmit x[−L], . . . , x[−1] in a guard interval of length LT/N , where

x[−L] = x[N − L], . . . , x[−1] = x[N − 1].

(b) The steps in Dijkstra’s algorithm are illustrated in the table below. In each iteration of the
algorithm, one node is added to the set K and the variables ωai, pai are updated. ωai is the
current minimum cost from node a to i; pai is the previous hop to node i in the min-cost path
from a.

The table is [40%]

K (ωab, pab) (ωac, pac) (ωad, pad) (ωae, pae) (ωaf , paf )

{a} (3, a) (5, a) (∞,−1) (∞,−1) (∞,−1)
{a, b} · (5, a) (7, b) (5, b) (∞,−1)
{a, b, c} · · (7, b) (5, b) (∞,−1)
{a, b, c, e} · · (6, e) · (8, e)
{a, b, c, e, d} · · · · (8, e)
{a, b, c, e, d, f} · · · · ·

From the table, we find that the minimum cost paths from node a are:

a - b (cost 3)
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a - c (cost 5)

a - b - e - d (cost 6)

a - b - e (cost 5)

a - b - e - f (cost 8)

Assessor’s comment: Generally well answered, though many had trouble calculating the dura-
tion of the guard interval.
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