
3F4 Data Transmission

Engineering Tripos 2018/19 – Solutions

Question 1

(a) We have g(t) = p(t)?p(−t) =
∫
p(u)p(u− t)du. Using this g(t) is the triangular function below. [15%]

t

1

−1 1

(b) From the above we note that g(m − k) = 0 for all integers k 6= m. Using this in the result of
part (a), r(m) = Xm + ñ(m). [5%]

(c) Sampling at time (m−∆) for m ≥ 1 gives the output [15%]

r(m−∆) =
∞∑
k=0

Xkg(m− k −∆) + ñ(m−∆)

= Xmg(−∆) +Xm−1g(1−∆) + ñ(m−∆)

= (1−∆)Xm + ∆Xm−1 + ñ(m−∆), (1)

where the values for g(−∆) and g(1−∆) are obtained from the sketch in part (b).

(d) If 0 < ∆ < 1
2 , then (1−∆) > ∆, so we detect Xm from r(m−∆) specified in (1). If 1

2 < ∆ < 1,
then we detect symbol Xm from r(m+ 1−∆) which will contain a ‘stronger’ contribution from
Xm: [15%]

r(m+ 1−∆) = ∆Xm + (1−∆)Xm+1 + ñ(m+ 1−∆). (2)

(e) Since ∆ = 1
2 , we detect Xm from (1). For brevity, we rewrite (1) as

rm = (1−∆)Xm + ∆Xm−1 + ñm, (3)

where ñm ∼ N (0, N0
2 ). The detector declares X̂m = A if rm > 0, and X̂m = −A otherwise. Due

to symmetry of the constellation symbols, the probability of error can be expressed as [25%]

P (X̂m 6= Xm) = P (X̂m 6= Xm | Xm = A)

=
1

2
P (X̂m 6= Xm | Xm = A, Xm−1 = A) +

1

2
P (X̂m 6= Xm | Xm = A, Xm−1 = −A).

(4)

The two terms are computed separately as follows:

P (X̂m 6= Xm | Xm = A, Xm−1 = A) = P ((1−∆)A+ ∆A+ ñm < 0 | Xm = A, Xm−1 = A)

= P (ñm < −A) = Q
(

A√
N0/2

)
.

(5)
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Next,

P (X̂m 6= Xm | Xm = A, Xm−1 = −A) = P ((1−∆)A−∆A+ ñm < 0 | Xm = A, Xm−1 = A)

= P (ñm < −(1− 2∆)A) = Q
(

(1− 2∆)A√
N0/2

)
.

(6)

Substituting (5) and (6) in (4), we obtain that the probability of detection error is

P (X̂m 6= Xm) =
1

2
Q

√2A2

N0

+
1

2
Q

√2(1− 2∆)2A2

N0

 .

(f) Let the coefficients of the 3-tap equaliser be [h0, h1, h2]. With ∆ = 0.1, Eq. (3) becomes

rm = 0.9Xm + 0.1Xm−1 + ñm. (7)

Letting g0 = 0.9, g1 = 0.1, the output of the FIR filter is [25%]

ym = Xmf0 +

3∑
j=1

Xm−jfj +

2∑
i=0

hiñm−i, (8)

where

f0 = h0g0 = h0(0.9),

f1 = h0g1 + g0h1 = h0(0.1) + h1(0.9),

f2 = h1g1 + h2g0 = h1(0.1) + h2(0.9),

f3 = h2g1 = h2(0.1).

We set f0 = 1 and f1 = f2 = 0 to solve for [h0, h1, h2]. This gives

h0 = 1.111, h1 = −0.1235, h2 = 0.0137. (9)

With these values f3 = h2g1 = 0.0014, and the output of the equaliser is

ym = Xm + 0.0014Xm−3︸ ︷︷ ︸
residual interference

+
2∑
i=0

hiñm−i︸ ︷︷ ︸
residual noise

.
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Question 2

(a) i) The TCP transmission rate is proportional to
√

1−q(t)
q(t) . Therefore, the factor by which the

transmission rate decreases is [10%]

R0.1

R0.5
=

√
(1− 0.1)/0.1√

(1− 0.05)/0.05
= 0.6882.

ii) In the slow start phase, the window size is increased by 1 for each ACK received. It starts
with W = 1, when the ack for the packet is received, W = 2. Then when the ack for these two
packets are received, W = 4, and so on. [10%]

In the congestion avoidance phase, the window size increases by 1/W for each received ack. After
an ack has been received for a window of W packets, the window size is increased to (W + 1).

iii) If the transmitter detects delay via three duplicate acks for the same packet, it retransmits
the missing packet, and reduces the window size to W/2 (from W ). On the other hand, if there
is a timeout due to not receiving acks for any of the packets in the window, then the window size
is set to W = 1. In both cases, the slow-start threshold ssthresh is set to W/2. [10%]

(b) i) We note that for i 6= j, the supports of si(t) and sj(t) do not overlap. Therefore [10%]

〈si(t), sj(t)〉 =

∫ 1

0
si(t)sj(t)dt =

{
E, i = j

0, i 6= j.

Therefore, an orthonormal basis is the set of functions {f1(t), . . . , fM (t)}, where

fi(t) =
1√
E
si(t) =

{√
M, for (i−1)

M < t ≤ i
M

0, otherwise.
, 1 ≤ i ≤M.

The vectors are
s1 = [

√
E, 0, . . . , 0], . . . , sM = [0, . . . , 0,

√
E],

with the only non-zero entry of si being in the ith position.

ii) The receiver first computes inner product of y(t) with each of the basis functions to form
r = [r1, . . . , rM ], where [20%]

r1 =

∫
R
y(t)f1(t)dt, . . . , rM =

∫
R
y(t)fM (t)dt.

If x(t) = si(t), then the vector r = si + n, where n = [n1, . . . , nM ] with

n1 =

∫
R
n(t)f1(t)dt, . . . , nM =

∫
R
n(t)fM (t)dt.

Hence r = [n1, . . . ,
√
E+ni, . . . , nM ], with the non-zero entry is in the ith position for 1 ≤ i ≤M .

Further, n1, . . . , nM are i.i.d. ∼ N (0, N0/2). Hence, noting that the messages are a priori equally
likely, the optimal decoding rule is decode message m̂ where

m̂ = arg max
1≤i≤M

ri.

iii) By symmetry, we can calculate the probability of error assuming that message 1 (waveform
s1(t)) was transmitted. An error occurs if r1 is not the maximum among [r1, . . . , rM ]. This
implies [25%]
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Pe = P ({r1 ≤ r2} ∪ {r1 ≤ r3} ∪ . . . ∪ {r1 ≤ rM})
= P

(
{
√
E + n1 ≤ n2} ∪ {

√
E + n1 ≤ n3} . . . ∪ {

√
E + n1 ≤ nM}

)
≤ P

(
{
√
E + n1 ≤ n2}

)
+ . . .+ P

(
{
√
E + n1 ≤ nM}

)
= (M − 1)P

(
n2 − n1 ≥

√
E
)

(a)
= (M − 1)Q

(√
E

N0

)
(b)
= (M − 1)Q

(√
Eb logM

N0

)

where step (a) holds because because (n2 − n1) ∼ N (0, N0), and (b) holds because each trans-
mitted vector (message) corresponds to logM bits.

iv) Using Q(x) ≤ e−x2/2, the bound in part (iii) becomes [15%]

Pe ≤ (M − 1)e
−Eb logM

2N0 ≤ e(log2M)(ln 2)e
−Eb log2 M

2N0 = exp

(
−
(
Eb
N0
− 2 ln 2

)
log2M

)
Therefore, if Eb

N0
> 2 ln 2, then Pe → 0 as M → ∞. As M increases, the number of orthogonal

signalling dimensions (equal to M) increases, and hence the probability of error decreases. (An
excellent answer will also mention that the decrease in probability of error comes at the expense
of a decrease in bandwidth efficiency with growing M ; but this is not expected as the question
does not ask for this.)
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Question 3

(a) i) The constellation is shown in the figure, with the decision region for each point being a 45◦

wedge containing that point. [10%]

A

p1

p2
p3

p4

p5

p6

p7
p8

X̂ = p1

Im(Y )

Re(Y )

d

d

D1

D2

ii) Due to the circular symmetry of the constellation and the noise distribution, the probability of
detection error is the same for each constellation symbol. Assuming that p1 was the transmitted
symbol, if D1 and D2 denote the two half-planes shown in the figure, the probability of error is

Pe = P (Y ∈ D1 ∪ D2) ≤ P (Y ∈ D1) + P (Y ∈ D2). (10)

Let N1, N2 denote the components of the N along the direction vector (p8 − p1) and its orthog-
onal complement, respectively. Then due to the circular symmetry of the (complex) Gaussian
distribution, the components N1, N2 are iid N (0, N0

2 ). Hence [25%]

P (Y ∈ D1) = P (N1 > d/2) = Q
(

d/2√
N0/2

)
,

where d denotes the distance between adjacent constellation points. By the same argument,

P (Y ∈ D2) = Q
(

d/2√
N0/2

)
. Substituting in (10), we obtain

Pe ≤ 2Q

√ d2

2N0

 . (11)

Finally, we note that d
2 = A sin(π/8), and A2 = Es = Eb log2 8 = 3Eb. Substituting these in

(11) yields the desired bound for the probability of decoding error of 8-ary PSK.

(b) i) Since the detector knows s, we now have an 8-PSK constellation with radius
√
sA. The energy

per constellation symbol is sA2, and hence the bound in part (a) applies with Eb scaled by s: [10%]

Pe,s ≤ 2Q
(√

6sEb
N0

sin(π/8)

)
.

ii) The probability of error bound averaged over all realizations of s is [15%]

Pe = E

[
2Q
(√

6sEb
N0

sin(π/8)

)]

= 2

∫ ∞
0

e−s · Q
(√

6sEb
N0

sin(π/8)

)
ds

≤
∫ ∞
0

e−s · e−
3Eb
N0

sin2(π/8)s
ds =

1

1 + 3 sin2(π/8)Eb
N0
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where the inequality uses the bound Q(x) ≤ 1
2e
−x2/2, for x ≥ 0.

iii) As Eb/N0, increases, probability of error for the AWGN channel (in part (a) decreases expo-
nentially with Eb/N0), while the probability of error with fading decreases much more slowly —
only as the inverse of Eb/N0 as Eb/N0 gets large. [10%]

Note: This is because there is a non-negligible probability of s (and hence the effective snr)
being very small, thus increasing the expected error probability. (This was not required to be
mentioned in the answer.)

(c) From part (a), the distance between adjacent points of the constellation is d = 2A sin(π/8). [20%]

From the angles marked in the figure below we see that

a =
d√
2

=
√

2A sin(π/8).

From the figure, we also deduce that

b =
a√
2

+ d sin 60◦ =
1 +
√

3

2
d = (1 +

√
3)A sin(π/8).

b

a

d

d

d

45◦ 45◦
60◦

(d) The average energy per symbol is [10%]

a2 + b2

2
= A2(3 +

√
3) sin2(π/8) = 0.693A2.

(The average symbol energy of the 8-PSK is A2.)
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Question 4

(a) The table is given below. In each iteration ωue is the minimum-cost from each node u to node e,
and nue is the next hop on the current min-cost path. [25%]

Iteration (ωae, nae) (ωbe, nbe) (ωce, nce) (ωde, nde)
0 (∞,−) (7, e) (∞,−) (2, e)
1 (9, b) (5, d) (3, d) (2, e)
2 (7, b) (4, c) (3, d) (2, e)
3 (6, b) (4, c) (3, d) (2, e)

The minimum cost-paths are:

A−B − C −D − E : cost 6

B − C −D − E : cost 4

C −D − E : cost 3

D − E : cost 2

ii) To compute the shortest paths between each pair of nodes in the network, Djikstra’s algorithm
requires knowledge of the entire network topology and costs of all the paths in the network. On
the other hand, in Bellman-Ford each node only requires knowledge of the costs to the nodes
connected to it, and their current minimum costs to the destination node. Since each node uses
only local information from its neighbours, it does not need to know the entire network topology.

[15%]

(b) i) Since the encoder produces three coded bits for every two input bits, the rate of the code is
2/3.

ii) The state diagram of the code is shown in the figure below, with the label on each edge of the
form ‘input bits/output bits’ corresponding to the transition: [25%]
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ii) The free distance of a convolutional code is the minimum weight among codewords generated
with the code starting and ending in the all-zero state. If the free distance is d, then any
collection of d(d − 1)/2e errors can be corrected, as long as these error bursts are not too close
to one another. [15%]

iii) For convenience, label the states as follows: 00→ a, 01→ b, 10→ c, 11→ d.

To compute the free distance of the code, we only need to consider the codewords along three
paths:

a− b− a, a− c− a, a− d− a.
This is because any longer paths starting and ending in the all-zero state contain the above
paths, and hence cannot have weight smaller than the codewords along these paths. From the
state diagram we see that: [15%]

The codeword along the path a− b− a is 010 110 which has weight 3.

The codeword along the path a− c− a is 111 101 which has weight 5.

The codeword along the path a− d− a is 011 101 which has weight 4.

The free distance is therefore 3. Starting from the all-zero state, the input sequence 01 00
produces the output sequence 010 110, and returns to the all-zero state.
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