




2. (a) Medical diagnostics image processing software is health critical and it is important to clarify the goals
of the system, all the requirements and spend su�cient time on understanding the all the details
prior to the start of the project. Since it is possible and advisable to define all the requirements in
advance and the cost of introducing any changes is high the traditional waterfall model is most likely
to be used for the task in this case. This model furthermore works well with the management tools,
and spending a lot of time on system specification might be an advantage rather than disadvantage
in this case.

The waterfall model follows the sequential design process starting with the definition of the sys-
tem requirements, followed by software requirements, analysis, program design, coding, testing and
operations.

The system could of course be improved by including iterations and prototyping.

(b) The waterfall model, if it was followed, is not the most suited for the development of the community
website. In this case, it is practically impossible to specify the system requirements in advance, in
fact, it is clear from the start that there will be a need to experiment with di↵erent features and
keep evolving or changing the system, it is not clear how popular the system would become and
how quickly it might need to be extended. ”Right” today for a community web site would never be
”right” tomorrow thus one cycle, big bang approach might not be what is required. The waterfall
model unfortunately does not allow for iterations, by the time the product is released there is very
limited resource left for any changes or extensions, any changes become very costly and would take
a long time - by the time they are actually implemented a completely di↵erent set of changes might
already be required.

(c) A more suitable software development methodology for the development of the community website
would be an agile methodology. An example of such methodology could be extreme programming
although a number of approaches could be used. Such lightweight approaches are based on the as-
sumption that everything (requirements, business cases, technology, user base among others) changes
and concentrates on improving the software responsiveness to change. It may include a number of
di↵erent practices but is very likely to concentrate on automated builds set up, continuous integration
techniques, incremental deployment, root cause analyses etc.

Some of the advantages include being able to release important features quickly, frequent feedback
from the users and thus the ability to understand the users better and keep changing the system
according to users’ changing requirements, which would result in a higher chance of success. Au-
tomating repeated tasks would allow to save time and resources and would also make system more
reliable.

The disadvantages however would include investment in automation, more e↵ort required to deploy
regularly, automated test and build scripts themselves would become a maintenance overhead and a
more close communication between various teams would be required.

(d) Since we expect a high number of changes an automated testing would be highly recommended in
this case with the aim to cover the most practical number of test cases. It would typically include
all unit tests, regression tests, UI testing if possible, etc.

Testing as early as possible (not just before the release) would be recommended. Several examples
might be provided such as an approach when the tests are written before the code (Test Driven
Development), in particular, following the pattern ”test - code’ refactor”. This approach would only
work if a set of good unit tests would be designed which run very fast, concentrate on one thing at
a time and clearly reveal its purpose etc.

However, in addition to this there are various other risks that can be identified in the case of in-
triduction of the new community website, for example

i. users may not find the system easily usable and may give up before they even had a chance to
find out all the benefits it provides - usability studies could be introduced to mitigate this risk

ii. the features requested by user might not be understood correctly or not function properly- beta
testing to groups of users can be introduced to mitigate this risk

iii. the website might suddenly become very popular and fail - performance testing, stress testing
and testing under load can be introduced to mitigate this risk

2












