3F6 Software Engineering and Design: 2014 Solutions

Dr Elena Punskaya

21 January 2014

1. (a) The required class diagram is shown in Fig. 1. Any reasonable naming conventions can be used.
Generalisation of photo and video classes should be used. Introduction of a class for Tags is desirable.

View

0..*

Medialtem

show()

displays

1.*

0.*

isFavourite()
getlLocation(
setLocation{text)
getDate()
addNote(text)
getNote()
getWidth(
getHeight(
display()

Photoltem

describes

described by

Videoltem

Tag

setName(
getName()

getimageType(
display()

getDuration()
getEncoding()
display(

Fig. 1.

1. (b) The required class diagram is shown in Fig. 2. Any reasonable naming conventions can be used.

View 0..* Medialtem L o Tag
displays ; described b
Show(IsFavouriteQ) describes Y setName()
getLocation(getName()
setLocation(text)
getDate()
addNote(text)
displays| 0..* getNote()
getWidth(
Style 1 Template 1 Collage getHeight()
defined by display()
getFrameColour(getName() additem(Photoltem)
getFrameThickness(} removeltem(Photoltem)
setTitle(text)
getTitleQ 1.+
1 display() contains Photoltem Videoltem
Layout -
getimageType() getDuration(
displayQ getEncoding()
getType() display()

Fig. 2.

1. (c) The required class diagram is shown in Fig. 3. Any reasonable naming conventions can be used.

Use Composite design pattern to allow Collage class to include both simple components such as individual
photos or videos and composite components such as collages.

View Medialtem Tag

1.> 1.* 0..*

displ i described b
show(splays isFavourite() describes Y setName()
getlLocation(getName()

setlocation(text)
1.* lgetDate()

contains |addNote(text)
getNote()
getwidth(}
getHeight()
displayQ
Style 1 Template 1 Collage Photoitem Videoltem
defined by
getFrameColour() getName() addltem(Photoltem) getimageType(getDuration(
getFrameThickness() removeltem(Photoltem) displayQ getEncoding(
setTitle(text) display()
getTitleQ
1 displayQ
Layout
getType(

Fig. 3.

1. (d) The required class diagram is shown in Fig. 4. Any reasonable naming conventions can be used.

/aCollageView:View /aCompositeCollage:Collage /aPhoto:Medialtem /aVideo:Medialtem /aCollage:Medialtem
i ' H '
1 1 1]
display() ’_;_ : : :
display(: : ,
]]
] 1
]]
) 1
<. 5 : :
display() ! ' !
] 1
1]
1]
1 1
------------------- R R R Y]
< 1 display(' '
1
1
]
1
<. ...
R it -

g g gy g S S

Fig. 4.

2.

(a)

Medical diagnostics image processing software is health critical and it is important to clarify the goals
of the system, all the requirements and spend sufficient time on understanding the all the details
prior to the start of the project. Since it is possible and advisable to define all the requirements in
advance and the cost of introducing any changes is high the traditional waterfall model is most likely
to be used for the task in this case. This model furthermore works well with the management tools,
and spending a lot of time on system specification might be an advantage rather than disadvantage
in this case.

The waterfall model follows the sequential design process starting with the definition of the sys-
tem requirements, followed by software requirements, analysis, program design, coding, testing and
operations.

The system could of course be improved by including iterations and prototyping.

The waterfall model, if it was followed, is not the most suited for the development of the community
website. In this case, it is practically impossible to specify the system requirements in advance, in
fact, it is clear from the start that there will be a need to experiment with different features and
keep evolving or changing the system, it is not clear how popular the system would become and
how quickly it might need to be extended. ”Right” today for a community web site would never be
"right” tomorrow thus one cycle, big bang approach might not be what is required. The waterfall
model unfortunately does not allow for iterations, by the time the product is released there is very
limited resource left for any changes or extensions, any changes become very costly and would take
a long time - by the time they are actually implemented a completely different set of changes might
already be required.

A more suitable software development methodology for the development of the community website
would be an agile methodology. An example of such methodology could be extreme programming
although a number of approaches could be used. Such lightweight approaches are based on the as-
sumption that everything (requirements, business cases, technology, user base among others) changes
and concentrates on improving the software responsiveness to change. It may include a number of
different practices but is very likely to concentrate on automated builds set up, continuous integration
techniques, incremental deployment, root cause analyses etc.

Some of the advantages include being able to release important features quickly, frequent feedback
from the users and thus the ability to understand the users better and keep changing the system
according to users’ changing requirements, which would result in a higher chance of success. Au-
tomating repeated tasks would allow to save time and resources and would also make system more
reliable.

The disadvantages however would include investment in automation, more effort required to deploy
regularly, automated test and build scripts themselves would become a maintenance overhead and a
more close communication between various teams would be required.

Since we expect a high number of changes an automated testing would be highly recommended in
this case with the aim to cover the most practical number of test cases. It would typically include
all unit tests, regression tests, Ul testing if possible, etc.

Testing as early as possible (not just before the release) would be recommended. Several examples
might be provided such as an approach when the tests are written before the code (Test Driven
Development), in particular, following the pattern ”test - code’ refactor”. This approach would only
work if a set of good unit tests would be designed which run very fast, concentrate on one thing at
a time and clearly reveal its purpose etc.

However, in addition to this there are various other risks that can be identified in the case of in-
triduction of the new community website, for example
i. users may not find the system easily usable and may give up before they even had a chance to
find out all the benefits it provides - usability studies could be introduced to mitigate this risk
ii. the features requested by user might not be understood correctly or not function properly- beta
testing to groups of users can be introduced to mitigate this risk
iii. the website might suddenly become very popular and fail - performance testing, stress testing
and testing under load can be introduced to mitigate this risk

3 (a) BOOK WORK: Database normalisation is the process by which the at-
tributes and relations of a database are organised to avoid logical inconsis-
tencies arising when the database is used. Normalisation aims to minimise
redundancy and dependency in the database thereby improving consistency
(since inconsistencies are prevented by the structure of the database), exten-
sibility (since changes to the database structure will only affect parts upon
which they are logically dependent), and efficiency (since redundant data is
not stored). It is important to note that selective denormalisation may help
for performance reasons.

(b) (i) The database design is poor for the following reasons:

- manager names and task names are repeated many times in the
relation (consistency/degeneracy/redundancy)

- the dependencies attribute contains lists of tasks which makes the
database difficult and slow to query

The design can be improved by
- introducing TaskID and ManagerID attributes
- splitting the relation into four relations

The following ER diagram shows a redesign that addresses the problems
mentioned above and includes the new attributes:

(T G

1
manager manages task

MapagerlD depends on

(ii) There are four tables in the updated database:

MANAGER Attribute = primary key
ManagerlD | ManagerName Attribute* = foreign key
TASK

Task1D l TaskName

TASK-MANAGER

(from "manages" relationship)

TaskID* I ManagerID*
TASK-TASK

(from "depends on" relationship)
TaskiD* | TaskPR*

Foreign Key References TASK . TaskID
(iii)

H OManagerName=Chris’ MANAGER <t TASK-MANAGER > TASK-TASK

TaskID = TaskID
D

b4 pmap) (TASK-MANAGER) 540 pw(cp) (MANAGER)
B=C

TaskPR = A

SELECT B.ManagerName FROM MANAGER JOIN TASK-MANAGER ON MANAGER.Manage:
= TASK-MANAGER.ManagerID JOIN TASK-TASK ON TASK-MANAGER.TaskID

= TASK-TASK.TaskID JOIN TASK-MANAGER AS A ON TASK-TASK.TaskPR

= A.TaskID JOIN MANAGER AS B ON A.ManagerID=B.ManagerID WHERE

MANAGER .ManagerName = ’Chris’;

(iv) The expression tree for the query in question (iii) is:
I,

0ManagerName-"Chn's'

X
mu.li.uw\o MANAGER
\
WD. TL., TASK-MANAGER

X
avtsen = TASK-TASK

X
csB — PTM(A,B)
| TT—TASK-MANAGER

PM(O,D)

MANAGER

After selection and projection pushing the tree is:

o

ManageriD = Mam

| HManuqodD
O ManagsrName="Chris*
HManaqoriD. D egeeme

| T MANAGER

X
TaskiD = Tasle\ TASK-MANAGER

]._.[TinkID, D]

ATien —~ TASK-TASK

| T~ TASK-MANAGER

PM(C,D)

MANAGER

(v)

TaskPR—

H OTaskName=‘excavate fou.udations’TASK—TASK X A PTT(A,B) (TASK—TASK)
D

> TASK > prc,y (TASK)

TaskID=TaskID

SELECT DISTINCT A.TaskName FROM TASK-TASK AS X JOIN TASK-TASK

AS Y ON X.TaskPR = Y.TaskID JOIN TASK AS Z ON Z.TaskID X.TaskID .
JOIN TASK AS A ON A.TaskID = Y.TaskPR WHERE Z.TaskName = "excavate
foundations";

4 (a) BOOK WORK:

Atomicity: each transaction must be atomic, otherwise it would not be
possible to recover cleanly from an aborted transaction.

Consistency: transactions must leave the system in a consistent state.
This is essential since any sequence of transactions can be aborted at
any point.

Isolation: results of an incomplete transaction must not be visible to
any other transaction.

Otherwise, another transaction might see an
inconsistent state and produce erroneous results.

Durability: the system must not fail between a transaction committing
and the results of the transaction being recorded in the system state.

b) The resource allocation graph is shown below up to and including step 10

at which point deadlock occurs (a number of candidates forgot that
the definition for deadlock is: the first time when a directed cycle
appears in the resourse allocation or wait-for-graph).

3

>
B
B
Py,
©

N

~—
[¢)]
-

—_—"—

O
E ——————
Y
O
Py
A&\~
y

O
<
® ,

c¢) The corresponding wait-graph is shown below

@v@
@A'@

d) Recovery from deadlock involves:

% aborting a transation which will break the deadlock loop (called the
victim)

* rolling back to the last check point
* redoing the remaining transactions
* restarting the victim at some later point in time

The victim is usually selected using the following criteria:

* has not been running for a long time
* has made few updates
* is blocking multiple transactions
In this case, the choice lies between T1, T2 and T4 (aborting T3 will not

avoid the deadlock). T4 is the most sensible choice based on recency and
fewer updates. T3 would complete first, followed by T2, and finally T1.

