
3F7 Information Theory and Coding

Engineering Tripos 2022/23 – Solutions

Question 1

(a) For x ∈ U = {a, b, c, d, e}, we have PX(x) = 1
3P1(x) +

2
3P2(x). Using this we obtain: [15%]

PX(a) =
1

15
+

1

3
=

2

5
, PX(b) =

1

15
+

1

6
=

7

30
, PX(c) =

1

15
+

1

12
=

3

20
,

PX(d) = PX(e) =
1

15
+

1

24
=

13

120
.

(b) Huffman coding provides an optimal symbol code. With the Huffman tree shown below, the
codewords are:

a → 0, b → 10, c → 110, d → 1110, e → 1111.
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The expected codelength is L =
∑

x∈U PX(x)ℓ(x) = 2.1833 bits/symbol. [25%]

(c) The entropy H(X) = −
∑

x∈U PX(x) log2 PX(x) = 2.124 bits. An upper bound on the length of
the arithmetic codeword is nH(X) + 2 = 2.124n+ 2 bits, or 2.124 + 2

n bits/symbol. [10%]

(d) Suppose that n1 of the n source symbols X1, X2, . . . , Xn came from source U1 and the remaining
(n − n1) from U . We note that n1 ≈ n

3 for large n. Since both the encoder and them decoder
know the selector sequence, we can split the sequence into two subsequences – one with length
n1 with the symbols from U1 and the other with length n2 with the symbols from U2 – and
compress them separately with arithmetic encoders for P1 and P2, respectively. They can be
decoded separately with the corresponding arithmetic decoders, and the sequence X1, . . . , Xn

can then be reconstructed using knowledge of the selector sequence.

The expected length of the codeword for (X1, . . . , Xn) with this scheme satisfies: [20%]

Ln ≤
(
n1H(U1) +

2

n1

)
+ +

(
(n− n1)H(U2) +

2

n− n1

)
= n1 log2 5 + (n− n1)(1.875) +

2

n1
+

2

(n− n1)
.
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As n → ∞, we have n1/n → 1
3 . Therefore, the expected number of bits per source symbol as

n → ∞:

L = lim
n→∞

Ln

n
=

1

3
H(U1) +

2

3
H(U2) = 2.024 bits/symbol.

Alternative scheme: For each symbol Xi, the arithmetic encoder could use sub-intervals de-
fined via the appropriate source distribution, i.e., P1 if the symbol Xi came from U1 and P2 if it
came from U2. In this case, expected codeword length satisfies Ln ≤ n1H(U1)+(n−n1)H(U2)+

2
n .

(e) i) The entropy for U2 is

H(U2) =
1

2
log(2) +

1

4
log(4) +

1

8
log(8) +

1

16
log(16) +

1

16
log(16) = 1.875.

The size of the typical set for the source U2 is close to 2
mH(U2 . With high probability, the sequence

Z = (Z1, . . . , Zm) will belong to the typical set. A rate R channel code of block length n has
2nR codewords. Therefore, if 2nR > 2mH(U2), then we can assign a unique channel codeword to
each source sequence in the typical set. Hence, we need [15%]

nR > mH(U2) ⇒ n >
1.875m

R
.

ii ) For transmission at rate R < C, we pick a code length n = 1.05× 1.875m
R (we need to round up

to an integer, but the effect is negligible for large m). The total number of channel codewords is
2nR = 21.97m. The total number of source sequences is 5m which is larger than 21.97m. Therefore
there are (many) source sequences that cannot be assigned a unique codeword.

However for any ϵ >0 and sufficiently large m, the observed (Z1, . . . , Zm) will belong to the
typical set with probability at least (1− ϵ). Moreover the typical set has size at most 2m(H(U2)+ϵ)

(see lecture notes). Since 2m(H(U2)+ϵ) = 2m(1.875+ϵ) < 21.97m for small values of ϵ, with high
probability the observed source sequence will belong to the typical set and hence be assigned a
unique codeword. Then with code length n and an optimal channel encoder and decoder, since
R < C we know that the transmitted codeword (and hence the source sequence) can be recovered
with high probability. [15%]

Assessor’s comment: Very few students gave correct answers for part (e), where the key point
is that to reconstruct the source sequence at the receiver with high probability, we only need to
assign and transmit codewords corresponding to typical source sequences. The set of typical source
sequences is much smaller than the set of all possible sequences.

.
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Question 2

(a) i) Z takes values in {0, 1, . . . , r}. For we have [10%]

PZ(0) = PX(0) = p, PZ(z) = PX(1)PY (r) = (1− p)qz, z ∈ {0, 1, . . . , r}.

ii) The entropy of Z is [10%]

H(Z) = p log
1

p
+

r∑
z=1

(1− p)qz log
1

(1− p)qz

= p log
1

p
+ (1− p) log

1

(1− p)
+ (1− p)

r∑
z=1

qz log
1

qz
= H(X) + (1− p)H(Y ).

(b) The code has parameters n = 5 and k = 1, i.e., two codewords of length 5. There are four possible
codes, one for each pair of values of a and b. For each code we evaluate the two codewords as
xG for x ∈ {0, 1}, and check whether ⌈dmin−1

2 ⌉ ≥ 2 as we know that ⌈dmin−1
2 ⌉ is the guaranteed

error correcting capability of the code. [30%]

1) a = 0, b = 0: Here G = [0 0 0 0 0], and the two codewords are identical: [0 0 0 0 0].
This code is trivial and clearly cannot correct errors.

2) a = 1, b = 0. The two codewords are [0 0 0 0 0] and [1 1 1 1 0]. We have dmin = 4,
therefore ⌈dmin−1

2 = 1, therefore it cannot correct all patterns of two channel errors. (For example,
decoding fails when any bits of first four bits the codeword are flipped.)

3) a = 0, b = 1: The two codewords are [0 0 0 0 0] and [0 0 0 0 1]. We have dmin = 1, so
the code cannot correct any errors.

4) a = 1, b = 1: The two codewords are [0 0 0 0 0] and [1 1 1 1 1]. We have dmin = 5,
therefore ⌈dmin−1

2 ⌉ = 2. The code can correct two channel errors.

Since a = 1, b = 1 is the only case where two errors can be corrected, the probability that the
generated code can correct two errors is P (a = 1)P (b = 1) = 2

3
2
3 = 4

9 .

(c) i) We have [10%]

PY |X(0 | 0) = PY |X(1 | 1) = P (S = p)(1− p) + P (S = q)(1− q) = 1− (p+ q)

2

PY |X(1 | 0) = PY |X(0 | 1) = P (S = p)p+ P (S = q)q =
(p+ q)

2
.

ii) Since PY |X is a binary symmetric channel with crossover probability (p+q)
2 , its capacity is

1−H2((p+ q)/2) where H2(·) is the binary entropy function. [10%]

iii) Since the state sequence is known at both the encoder and the decoder, the capacity formula
is max I(X;Y |S) where the maximum is over all input distributions of the form PX|S . We have [20%]

I(X;Y |S) = H(Y |S)−H(Y |X,S). (1)

We have

H(Y |X,S) = P (S = p)H(Y |X,S = p) + P (S = q)H(Y |X,S = q) =
1

2
H2(p) +

1

2
H2(q).
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Note that H(Y |S) ≤ 1 since Y is binary valued. Since the channel acts symmetrically on X = 1
and X = 0 (for either value of S), the symmetric input distribution PX|S(0|s) = PX|S(1|s) = 1

2

results in PY |S(0|s) = PY |S(1|s) = 1
2 , for s ∈ {p, q}. Thus, with this input distribution H(Y |S) =

1
2H(Y |S = p) + 1

2H(Y |S = q) = 1. Therefore, from (1), the capacity is C = 1− (H2(p)+H2(q))
2 .

iv) Out of n channel uses, let np be the number of channel uses where the crossover probability
is p. For the remaining (n− np) the crossover probability is q. Note that np/n → 1

2 as n → ∞.
Since the state sequence is known to both encoder and decoder, we can use two separate capacity-
achieving codes, one of length np for the BSC(p) and the other of (1−np) for the BSC(q). Since
the capacities of these two channels are (1−H2(p)) and (1−H2(q)) bits/transmission, respectively,

the overall transmission rate can be arbitrarily close to C = 1− (H2(p)+H2(q))
2 [10%]

Assessor’s comment: A lot of students did not interpret part (b) correctly, with some being
confusing code” with “codeword”. Recall that a k×n generator matrix defines a code which consists
of 2k codewords each of length n
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Question 3

(a) i) FALSE. Since H(Y n | Z) = H(Y n | g(Y n)), this conditional entropy is zero only when g(Y n)
is an invertible function, i.e., Y n can be recovered from Z. In general, this is not possible (e.g.,
when Z =

∑n
i=1 Yi)) . [10%]

ii) TRUE. Using the formula of mutual information and the chain rule for entropy, we have [15%]

I(Xn ; Y n) = H(Xn)−H(Xn|Y n) =
n∑

i=1

H(Xi|Xi−1)−H(Xn) (2)

Since each Xi is binary, we have H(Xi) ≤ 1, and since conditioning cannot increase the en-
tropy, H(Xi|Xi−1) ≤ H(Xi) ≤ 1 for i = 1, . . . , n. Using this for each term in (2), we obtain
I(Xn ; Y n) ≤ n−H(Xn).

iii) TRUE. Since H(g(Y n)) ≤ H(Y n) for any function g, we have: [10%]

H(Z) = H(g(Y n)) ≤ H(Y n) =

n∑
i=1

H(Yi|Y i−1) ≤
n∑

i=1

1 = n.

where the inequality above holds because Yi is binary, and since conditioning cannot increase
entropy H(Yi|Y i−1) ≤ H(Yi) = 1.

(b) The capacity of the channel is

max
PX

I(X;Y ) = H(Y )−H(Y |X),

where PX is a distribution over 8-bit vectors. Since there are 8 equiprobable outputs for each
input vector X, we have have

H(Y |X) =
∑

x∈{0,1}8
PX(x)H(Y |X = x) = log2 8 = 3.

Since Y is an eight bit vector, it can take on at most 28 different values, henceH(Y ) ≤ log2 2
8 = 8.

Therefore [30%]

I(X;Y ) = H(Y )− 3 ≤ 8− 3 = 5. (3)

Suppose we take PX to be the uniform distribution assigning equal probability ( 1
256) to all eight-

bit vectors. Then for each eight bit vector y ∈ {0, 1}8, let S(y) denote the set of input vectors
which can result in y (by flipping exactly one bit). Note that for any y, there are exactly 8
vectors in S(y). We therefore have

PY (y) =
∑

x∈S(y)

PX(x)PY |X(y|x) =
∑

x∈S(y)

1

256
· 1
8
=

1

256
,

which gives H(Y ) = 8. Therefore, with the uniform input distribution, we can achieve equality
in (3) and the capacity is C = 5 bits/channel use.

(c) The Hamming code maps k = 4 information bits to 7 code bits and has the parity check matrix:

H =

 1 1 0 1 1 0 0
1 1 1 0 0 1 0
1 0 1 1 0 0 1

 .
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From the parity check matrix, we observe that the code has minimum distance dmin = 3 (as the
minimum number of columns that add up to get the all-zeros vector is 3). Hence the code can
correct one error in a block of 7 code bits. [35%]

For the 8-bit vector channel, we can transmit five information bits (b1, b2, b3, b4, b5) as follows.

Encoder: Encode the first 4 bits (b1, b2, b3, b4) into a 7-bit Hamming codeword denoted by
(x1, . . . , x7). Set x8 = b5. The input x = (x1, . . . , x8) is transmitted over the 8-bit channel.

Decoder: The output symbol is y = (y1, . . . , y8). Using the Hamming code, decode the first 7 bits

(y1, . . . , y7) to a Hamming codeword and the corresponding information sequence is (b̂1, . . . , b̂4).
If there has been a bit flip in the first 7 bits (y1, . . . , y7), then set b̂5 = ȳ8 (i.e., the complement),
otherwise set b̂5 = y8.

The last step works because we know that the 8-bit channel flips exactly one bit, and the
Hamming code is guaranteed to correct the bit flip if it occurred in the first 7 bits. If it did not,
the bit flip must be in the eighth bit. In this way, we can transmit 5 bits error-free in each use
of the eight-bit channel.
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Question 4

(a) i)Each parity check equation corresponds to a row of the parity check matrix. [15%]

Therefore the 1× n parity check matrix is given by:

H = [1 1 . . . 1].

The code rate is (n− 1)/n.

ii) Using the formula (in Information data book) relating systematic generator and parity check
matrices, the (n− 1)× n systematic generator matrix is given by

G =
[
I(n−1)×(n−1) 1n−1

]
,

where I(n−1)×(n−1) is the (n− 1)× (n− 1) identity matrix, and 1n−1 is the all-ones [10%]

column vector of length (n− 1).

(b) i) The 1× n generator matrix for this code is given by [10%]

G = [1 1 . . . 1].

ii) As above, the corresponding (n− 1)× n systematic parity check matrix is [10%]

H =
[
I(n−1)×(n−1) 1n−1

]
,

(c) From the figure in the question, we have g(y) = 0.25(2− y) for y ∈ [0, 2] and g(y) = 0.25(2 + y)
for y ∈ [−2, 0]. Therefore,

f(y | x = 1) = g(y − 1) =


0.5− (y−1)

4 = 0.75− 0.25y, y ∈ (1, 3)

0.5 + (y−1)
4 = 0.25 + 0.25y, y ∈ [−1, 1]

0, otherwise.

And, [20%]

f(y | x = −1) = g(y + 1) =


0.5− (y+1)

4 = 0.25− 0.25y, y ∈ [−1, 1]

0.5 + (y+1)
4 = 0.75 + 0.25y, y ∈ (−3,−1)

0, otherwise.

Therefore the likelihood ratio is

f(y | x = 1)

f(y | x = −1)
=


∞, y ∈ (1, 3)
(1+y)
(1−y) , y ∈ [−1, 1]

0, y ∈ (−3,−1).

(d) The factor graph for the code is as shown below.

V,
- chack I

⑨
V2

Chech2i
check 3

V5
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Using part (c), the initial LLRs for the five code bits are

L(y1) = 0.2007, L(y2) = 0.619, L(y3) = −0.8473, L(y4) = 2.944, L(y5) = −∞.

The second code bit receives messages from check 1 and check 3. Therefore its final LLR after
one complete iteration of message passing is

L2 = L(y2) + Lc1→v2 + Lc3→v2 = 0.619 + Lc1→v2 + Lc3→v2 .

From the message passing rules we have: [35%]

Lc1→v2 = 2 tanh−1 [tanh(L(y1)/2)] = 0.2007

Lc3→v2 = 2 tanh−1 [tanh(L(y3)/2) tanh(L(y4)/2)] = −0.842

Therefore, the final LLR for code bit 2 is:

L2 = 0.619 + 0.2007− 0.842 = −0.0223.

That is, after one complete iteration, the decoder thinks the second codebook is slightly more
likely to be a 1 rather than a 0. (We say slightly more likely because the magnitude of the LLR
is small.)
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