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EGT2
ENGINEERING TRIPOS PART IIA

Thursday 27 April 2023 9.30 to 11.10

Module 3F7

INFORMATION THEORY AND CODING

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.
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1 Consider two sources U1 and U2 taking values in the alphabet U = {a, b, c, d, e}
with probability distributions P1 =

{1
5,

1
5,

1
5,

1
5,

1
5
}
and P2 =

{1
2,

1
4,

1
8,

1
16,

1
16

}
, respectively.

We consider a new source X which produces a symbol as follows. First, a selector
independently chooses either source U1 or U2, with U1 chosen with probability 1

3 and U2
with probability 2

3 . If the selector chooses U1, then X is drawn according to P1, otherwise
it is drawn according to P2.

(a) Find the probability mass function PX of the source X . [15%]

(b) Specify an optimal symbol code for the source X and calculate its expected code
length. [25%]

(c) Consider a sequence of symbols (X1, . . . ,Xn) produced independently and identically
distributed according to PX . The sequence is compressed using an arithmetic encoder.
Compute an upper bound on the expected length of the codeword for (X1, . . . ,Xn). [10%]

(d) Consider again a sequence of symbols (X1, . . . ,Xn) produced independently and
identically distributed according to PX , but now suppose that both the encoder and decoder
know which of U1 or U2 each Xi came from. Briefly describe how you would construct
a practical compression scheme whose expected code length is close to the optimal value
when n is large. Determine the expected number of bits per source symbol for the scheme
as n→∞. [20%]

(e) Consider now a sequence of m symbols (Z1, . . . , Zm) from the source U2,
i.e., produced independently and identically distributed according to the probability
distribution P2. Assume that m is large. We wish to transmit the source sequence
over a communication channel with input alphabet X , output alphabet Y , and capacity C
bits/transmission. Suppose that we use a channel code with rate R < C bits/transmission.

(i) What is the minimum number of channel transmissions necessary so that
(Z1, . . . , Zm) can be reconstructed at the decoder with high probability? Give your
answer in terms of m and R. [15%]

(ii) Consider a channel code of rate R < C and code length n that is 5% larger
than the minimum value determined above. With these parameters, explain why
a unique codeword cannot be assigned to all possible length m source sequences
generated from the source U2. Despite this, why is it possible to reconstruct the
source sequence (Z1, . . . , Zm) at the channel decoder with high probability? [15%]
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2 (a) Let X be a binary random variable taking values in {0,1} with probability
mass function {p, (1− p)}. LetY be another random variable, independent from X , taking
values in {1, . . . ,r} with probability mass function {q1, . . . ,qr }. Let Z = XY be the
product of X and Y .

(i) Determine the probability distribution of Z . [10%]

(ii) Determine H(Z), the entropy of Z , in terms of p, H(X) and H(Y ). [10%]

(b) A random channel code is constructed as follows. First, two random bits a ∈ {0,1}
and b ∈ {0,1} are independently generated using the probability mass function

{1
3,

2
3
}
.

Then, a linear code is constructed using the following generator matrix:

G = [a a a a b].

What is the probability that the generated code is able to correct at least 2 channel errors
(bit-flips)? Hint: Construct all the possible codes. [30%]

(c) Consider a binary channel with the input symbol X and output symbolY both taking
values in {0,1}. At each time instant, the channel is a binary symmetric channel (BSC)
with crossover probability either p or q with equal probability. Specifically, for each
i = 1,2, . . ., there is a state variable Si ∈ {p,q}, which is equal to either p or q with
equal probability. As shown below, PYi |Xi corresponds to BSC(p) channel if Si = p, and
otherwise corresponds to a BSC(q) channel. Assume that S1,S2, . . . are independent from
one another and also independent from the channel inputs X1,X2, . . ..

X = 0
1 − p

Y = 0

p

Y = 1X = 1
1 − p

p

X = 0
1 − q

Y = 0

X = 1
1 − q

Y = 1

q
qS = p S = q

(i) Determine the conditional distribution PY |X . [10%]

(ii) Compute the capacity of the channel when the state sequence is not known to
either the encoder or the decoder. [10%]

(iii) Compute the capacity of the channel when the state sequence S1,S2, . . . is
known to both the encoder and decoder. [20%]

(iv) For part (iii), describe how you could construct a capacity-achieving scheme
using two capacity-achieving codes, one for BSC(p) and another for BSC(q). [10%]
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3 (a) Consider a binary input, binary output memoryless channel. The channel
input sequence is Xn = (X1, . . . ,Xn) and the output sequence is Yn = (Y1, . . . ,Yn), where
each Xi and Yi takes values in {0,1}. The output sequence Yn is processed via a function
g to produce Z = g(Yn). Label each of the the following statements as TRUE or FALSE,
with justifications.

(i) H(Yn | Z) = 0. [10%]

(ii) I(Xn ;Yn) ≤ n − H(Xn | Yn). [15%]

(iii) H(Z) ≤ n. [10%]

(b) Consider a channel for which the input and output symbols are each 8-bit binary
vectors. Each time it is used, the channel flips exactly one of the bits in the input symbol,
but the receiver does not know which one. The other seven bits are received without error.
Each of the 8 bits in the input symbol is equally likely to be the one that is flipped.

(i) Determine the capacity of the channel. [30%]

(ii) Show by describing an explicit encoder and decoder that it is possible to
communicate error-free over the channel at the rate of 5 bits/channel use. [35%]

Hint: The (7,4) Hamming code described by the following parity check matrix may be
useful.

H =


1 1 0 1 1 0 0
1 1 1 0 0 1 0
1 0 1 1 0 0 1

 .
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4 (a) Consider a binary linear code with code length n and a single parity check
constraint on the code bits (c1, . . . , cn), given by: c1 + c2 + . . . + cn = 0. That is, the
modulo-two sum of all the code bits equals zero.

(i) Specify a parity check matrix for the code, and determine the code rate. [15%]

(ii) Find a systematic generator matrix for the code. [10%]

(b) Consider a binary repetition code where a single information bit is repeated to form
a length n codeword. That is, 0 is mapped to the all-zeros codeword, and 1 to the all-ones
codeword.

(i) Specify a generator matrix for the code. [10%]

(ii) Find a systematic parity matrix for the code. [10%]

(c) Let the function g(y) be the probability density function shown in the figure below.

y

g(y)

0.5

0-2 2

Consider a memoryless channel with binary inputs x ∈ {−1,1}, and a continuous-valued
output y generated according to a conditional density f (y | x) = g(y − x), for x ∈ {−1,1}.
Compute the likelihood ratio f (y |x=1)

f (y |x=−1) for y in the interval (−3,3). [20%]

(d) Consider a binary linear code with the following parity check matrix.

H =


1 1 0 0 0
1 0 1 0 1
0 1 1 1 0

 .
The code is used over the channel defined in part (c) with the following mapping. Each 0
in the codeword is mapped to a channel input +1 and each 1 in the codeword is mapped
to a channel input −1. The received sequence is y = [0.1, 0.3, −0.4, 0.9, −1.1]. A belief
propagation decoder is used for decoding, with messages in log-likelihood ratio (LLR)
format. Suppose that we stop the decoder after one complete iteration of message passing,
i.e., after one round of variable-to-check and check-to-variable messages. Compute the
final LLR for the second code-bit. [35%]

END OF PAPER
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