
3F7 Information Theory and Coding

Engineering Tripos 2020/21 – Solutions

Question 1

(a) Since X − Y − Z form a Markov chain, by the data processing inequality we have [20%]

I(X;Z) ≤ I(X;Y ) = H(Y )−H(Y |X) ≤ H(Y ).

Since Y takes values in a set of cardinality k, we have H(Y ) ≤ log2 k. Hence I(X;Z) ≤ log2 k.

(b) i) An optimal binary code can be derived using the Huffman procedure, shown below: [25%]

The codewords are:

a→ 111, b→ 110, c→ 101, d→ 100,

e→ 011, f → 010, g → 0011, h→ 0010, i→ 000.

The expected codelength is 7
9 · 3 + 2

9 · 4 = 29/9 = 3.22 bits/symbol.

ii) We have H(Xk | Xk − 1) =
∑

x∈{a, ..., i} P (Xk−1 = x)H(Xk | Xk−1 = x). To compute this,

the probability distributions are P (Xk−1 = x) = 1
9 , and [25%]

P (Xk = x | Xk−1 = x) = 0.99, P (Xk = y | Xk−1 = x) =
0.01

8
for y 6= x, y ∈ {a, ..., i}.

Using thus, we compute the conditional entropy:

H(Xk | Xk−1) =
∑

x∈{a, ..., i}

1

9

[
0.99 log2

1

0.99
+ 8× 0.01

8
log2

8

0.01

]
= H2(0.01) + 0.03 = 0.11.

iii) Using the chain rule, the joint entropy is

H(X1, . . . , XN ) = H(X1) +H(X2 | X1) +H(X3 | X2, X1) + . . .+H(XN | XN−1, . . . , X1)

= H(X1) +

N∑
k=2

H(Xk | Xk−1)

= log2 9 + (N − 1)(0.11) = (0.11)N + 3.06
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The second equality above holds because H(Xk | Xk−1, . . . X1) = H(Xk | Xk−1), for k ≥ 2. [20%]

v) Arithmetic coding. Bound on the expected code length for compressing N source symbols:
= H(X1, . . . , XN ) + 2 = (0.11)N + 5.06 bits. [10%]

Assessor’s comment: Generally well answered, though many made mistakes in computing the
conditional entropy in part (b).(ii).
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Question 2

(a) The entropy H(X) = 0.1614, and the probability of any sequence xn is (0.98)na(0.01)nb+nc ,
where na, nb, nc are the number of occurrences of a, b, c in the sequence. Therefore

Aε,n =
{
xn , : 0.16− ε ≤ na

n
log2

1

0.98
+
na + nb

n
log2

1

0.01
≤ 0.16 + ε

}
=
{
xn , : 0.15 ≤ 0.03

na
n

+ 6.64
na + nb

n
≤ 0.17

}
(1)

The length-100 sequences that are in this set are those with na = 98 and nb + nc = 2, i.e., there
are only three kinds of sequences: 1. 98 a’s and 2b’s; 2. 98 a’s and 2 c’s; 3. 98 a’s, 1 b and 1 c. [30%]

ii) The total number of such sequences is
(
100
2

)
22 = 19, 800. Since log2(19800) = 14.27, the

number of bits needed for each codeword is 15. [15%]

(b) Let QX be any other pmf over {1, . . . , N} with
∑N

i=1 iQX(i) = α. Since the relative entropy
D(QX‖P ∗X) is non-negative, we have:

0 ≤ D(QX‖P ∗X) =
∑
i

QX(i) log2
QX(i)

2−(λ0+λ1i)

= −H(QX) +
∑
i

(λ0 + λ1 i)QX(i)

= −H(QX) + λ0 + λ1α,

where the last equality holds because the expected value under QX is α. Therefore, [30%]

H(QX) ≤ λ0 + λ1α (2)

Moreover, the entropy of P ∗X is

H(P ∗X) =
∑
i

2−(λ0+λ1i) (λ0 + λ1i) = λ0 + λ1α. (3)

Combining (2) and (3) we see that H(P ∗X) ≥ H(QX), with equality if and only if QX = P ∗X .

(c) From part (i), the max-entropy pmf P ∗X over {1, 2} is of the form

P ∗X(1) = 2−(λ0+λ1) = p, P ∗X(2) = 2−(λ0+2λ1) = pq, P ∗X(2) = 2−(λ0+3λ1) = pq2

where we have denoted p = 2−(λ0+λ1) and q = 2−λ1 . For it be a valid pmf, we need

p+ pq + pq2 = 1 ⇒ p =
1

1 + q + q2
. (4)

The expected value is

E[X] = 1p + 2pq + + 3pq2 = p(1 + 2q + 3q2) =
(1 + 2q + 3q2)

(1 + q + q2)
= 1.5 (5)

Therefore q is the solution of the quadratic 1.5q2 + 0.5q − 0.5 = 0. This gives q = 0.4343, from
which p = 1

1+q+q2
= 0.6162. Therefore the max-entropy pmf is [25%]

P ∗X(1) = 0.6162, P ∗X(2) = 0.2676, P ∗X(3) = 0.1162.

Assessor’s comment: In part (a).(i), most stopped with Eq. (1) and did not simplify the
condition to explicitly specify which sequences are contained in the typical set. This led to inaccurate
answers for (a).(ii), based on bounds on the size of the typical set rather than the exact number of
sequences in it. Part (b).(i) was well answered in general, but most did not solve the simultaneous
equations in (b).(ii), perhaps due to lack of time.
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Question 3

(a) i) With the given Z − Y mapping, the transition probability matrix is [20%]

−1
0.5 −1

0.5

00
1

0.5

1
0.5

1

Transition probability matrix:
Y

PY |X −1 0 1

X
−1 0.5 0.5 0
0 0 1 0
1 0 0.5 0.5

ii) Due to the symmetry between inputs −1 and 1, the optimal output distribution will have the
form [30%]

PX(−1) = PX(1) = p and PX(0) = 1 − 2p. The corresponding output distribution is given by
PY (−1) = PY (1) = p

2 and PY (0) = (1− p). Then the mutual information is

I(X;Y ) = H(Y )−H(Y | X)

= H({p/2, p/2, 1− p})− pH(Y | X = −1)︸ ︷︷ ︸
1

−(1− 2p)H(Y | X = 0)︸ ︷︷ ︸
0

− pH(Y | X = 1)︸ ︷︷ ︸
1

= 2 · p
2

log2
2

p
+ (1− p) log2

1

(1− p)
− 2 · p · 1

= H2(p)− p.

We want to maximise f(p) = H2(p)− p over p ∈ (0, 1/2). Setting the derivative to zero:

f ′(p) = log2
1− p
p
− 1 = 0 ⇒ Optimal value of p = p∗ =

1

3

Capacity = H2(1/3) − 1/3 = 0.585 bits. Capacity achieving distribution PX(−1) = PX(0) =
PX(1) = 1

3 .

(b) i) Using the law of total probability, the density of Z = X +N can be written as [20%]

f(z) = pf(z | X = −1) + (1− 2p)f(z | X = 0) + pf(z | X = 1)

=


p/2, for − 2 ≤ z < 1,

(1− p)/2, for − 1 ≤ z ≤ 1,

p/2, for 1 < z ≤ 2.

ii) The mutual information with an input distribution of the form in part (i) is [30%]

I(X;Z) = h(Z)− h(Z | X)

= h(Z)− ph(Z | X = −1)− (1− p)h(Z | X = 0)− ph(Z | X = 1)

= h(Z)− p log2 2− (1− p) log2 2− p log2 2 = h(Z)− 1.

In the last line, we have used the fact that the differential entropy of a uniform random variable
on [A,B] is log2[B − A]. Z can take values in the interval [−2, 2], and from the hint, h(Z) is
maximised when Z is uniform in [−2, 2]. (In this case h(Z) = log2 4.)
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From the density f(z) computed in part (i), we see that the density is Unif[−2, 2] if p/2 =
(1− p)/2, i.e., for p = 1/2.

Therefore, a capacity achieving input distribution is PX(−1) = PX(1) = 1
2 and PX(0) = 0. The

capacity is
C = log2 4− 1 = 1 bit.

Assessor’s comment: Parts (a).(i) and (b).(i) were done well in general, but relatively few got
the correct channel capacity in (a).(ii), often due to not using the symmetry between the inputs -1
and 1.
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Question 4

(a) Code length n = 6, (n− k) = 4, therefore dimension n = 2. Rate = 2/6 = 1/3. [10%]

(b) We perform elementary row operations to get a 4× 4 identity matrix on the right: [20%]

H =


1 0 0 0 1 1
1 1 0 0 0 1
1 0 1 0 0 1
0 1 1 1 0 1

 R4←R4+R3−→


1 0 0 0 1 1
1 1 0 0 0 1
1 0 1 0 0 1
1 1 0 1 0 0

 R1←R1+R2, R3←R3+R2−→


0 1 0 0 1 0
1 1 0 0 0 1
0 1 1 0 0 0
1 1 0 1 0 0


Finally push rows 3,4 to the top to get:

Hsys =


0 1 1 0 0 0
1 1 0 1 0 0
0 1 0 0 1 0
1 1 0 0 0 1

 .
(c) If Hsys = [P T | In−k], then Gsys = [Ik | P ]. Hence [10%]

Gsys =

[
1 0 0 1 0 1
0 1 1 1 1 1

]
(d) The code has 4 codewords. These can be found from Gsys. The codewords corresponding using to

the information sequences [0, 0], [0, 1], [1, 0] and [1, 1] are [0, 0, 0, 0, 0, 0], [1, 0, 0, 1, 0, 1], [0, 1, 1, 1, 1, 1],
and [1, 1, 1, 0, 1, 0], respectively. [10%]

Therefore, for the received sequence [1, 1, 1, 1, 1, 1] the minimum-distance codeword is [0, 1, 1, 1, 1, 1].

(e) The factor graph is shown below: [15%]

(f) i) The channel evidence in LLR form for the AWGN channel is (from databook) L(yj) = 2
σ2 yj .

For the six variable nodes, these are: L(y) = [−1, 1, 2.4, 1.2, 0.4, 1.6]. [5%]

The message sent by variable node 1 to checks 1, 5, and 6 in the first iteration is L(y1) = −1.

ii) The fourth code bit (denoted v4) is connected only to the fourth check node (denoted c4).

The messages received by c4 from v2, v3, v6 in the first iteration are L(y2) = 1, L(y3) = 2.4, L(y6) =
1.6, respectively. [30%]
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Therefore the message Lc4→v4 in the first iteration is:

Lc4→v4 = 2 tanh−1 (tanh(0.5) tanh(1.2) tanh(0.8)) = 0.5233.

Therefore the final LLR for code bit 4 after one round of message passing is L̂4 = L(y4)+Lc4→v4 =
1.7233. Since this is positive, the fourth code bit is decoded as a 0.

We follow the same procedure for the fifth code bit (v5) which is connected only to the check c1.

The messages received by c1 from v1, v6 in the first iteration are L(y1) = −1, L(y6) = 1.6,
respectively. Therefore the message Lc1→v5 in the first iteration is:

Lc1→v5 = 2 tanh−1 (tanh(−0.5) tanh(0.8)) = −0.6342.

Therefore the final LLR for code bit 5 after one round of message passing is L̂5 = L(y5)+Lc4→v4 =
−0.2342. Since this is negative, the fifth code bit is decoded as a 1.

Assessor’s comment: The most popular question in the paper and well-answered by most.
Many students did not use the formula from the data book for the channel log-likelihood ratios in
part (f), and computed these from scratch.
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