
3F7 Information Theory and Coding

Engineering Tripos 2021/22 – Solutions

Question 1

(a) i) Noting that PY (i) = PX(Heads)P (Y = i |X = H) + PX(Tails)P (Y = i |X = Tails), for
i ∈ {1, 2, 3, 4} we have PY (1) = PY (2) = 1
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Using this, H(Y ) =
∑4

i=1 PY (i) log2
1

PY (i) = 1.89 bits.

ii) We have H(Y | X) = PX(Heads)H(Y | X = Heads) + PX(Tails)H(Y | X = Tails) =
1
2 log2(3) + 1

2 log2(2) = 1.29 bits.

iii) From the chain rule, H(X,Y ) = H(Y |X)+H(X) = H(Y )+H(X |Y ). Noting thatH(X) = 1
bit, H(X | Y ) = H(Y | X) +H(X)−H(Y ) = 1.29 + 1− 1.89 = 0.4 bits.

(b) i) We divide the first interval in arithmetic coding according to PX1(a) = PX1(b) = 1
2 and

subsequent intervals according to the conditional distributiond PXk|Xk−1
(.|.)
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The resulting interval satisfies 0.2765 < 9×2−5 < 11×2−5 < .35 so contains two dyadic intervals
of size 2−5 but no dyadic interval of size 2−4. Hence we have a choice of two codewords of length
5 corresponding to the binary representation of 9 and 10, i.e., 0 1 0 0 1 and 0 1 0 1 0, respectively1.

ii) A lower bound2 on the expected codelength is the joint entropy

H(X1, X2, X3, X4) = H(X1) +H(X2 | X1) +H(X3|X2) +H(X4|X3)

= H2(0.5) + 3H2(0.7) = 1 + 3× 0.88 = 3.64 bits.

iii) The upper bound for the expected length of arithmetic codeword is H(X1, X2, X3, X4) + 2 =
5.64 bits. This is not a useful bound because the expected code length is larger than the
codelength without any compression (4 bits). Arithmetic coding is asymptotically optimal in

the sense that the upper bound for the number of bits per symbol H(X1,...,Xn)
n + 2

n tends to the
entropy as n grows large, but n = 4 is not large enough to yield any benefits even as compared
to uncompressed transmission.

1We have used the convention that the interval corresponding to a is always the lower interval. As long as encoder
and decoder are in agreement, it is possible to adopt other conventions, for example “the lower interval is always larger”,
resulting in a different outcome: interval [0.245, 0.3185) satisfying 0.245 < 4 × 2−4 < 5 × 2−4 < 0.3185 and hence a
codeword of length 4 corresponding to the binary representation of 4, i.e., 0 1 0 0. There are other valid options.

2The examiner intended for students to compute the entropy in this question, which the vast majority did. However,
since the question asks for the minimum rather than a lower bound, the precise answer to the question is the length of
the optimal (Huffman) prefix-free code for the distribution of X1, X2, X3, X4. A few students computed this and were
adequately rewarded in the marking scheme.
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It was a fairly standard question on entropies and data compression and was well solved overall.
Part (a) was done well by most with a few stumbling on calculator/mental arithmetic mistakes. In
Part (b), performance on the arithmetic encoder was variable, with many struggling to pick the largest
dyadic interval inside the source interval. The solution for this part is not unique as it depends on
how you pick the interval ordering: any consistent way of doing so (‘a’ on top or ‘a’ below, largest
interval always below) was accepted but those who arbitrarily picked the order or intervals in a way
that could not logically be guessed by a decoder were marked down for it. There was a slight blunder
in Part (b)(ii) where the examiner had intended for students to compute the block entropy, but the
precise answer to the question as asked (“minimum” instead of “lower bound”) was the Huffman code
for the block probability distribution. Six students gave or attempted to give the precise answer to
this question by computing the Huffman code and were adequately rewarded for this unforeseen extra
effort in the marking scheme.

Question 2

(a) i) If we taste one bottle at a time, the expected number of tastings is minimized by first tasting
the one most likely to be bad (bottle 1), then the next likeliest (bottle 2), and so on until bottle
5. We stop when we identify the bad bottle. The expected number of tastings for this order
(1→ 2→ 3→ 4→ 5) is

T̄ = 1 · 8

23
+ 2 · 6

23
+ 3 · 4

23
+ 4 · 2

23
+ 5 · 2

23
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23
=
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23
= 2.3913

ii) When we are allowed to mix and taste, Huffman coding gives the optimal strategy. The
Huffman code is given in the figure below.

We can translate this to a tasting strategy by first tasting a mixture to determine the first bit of
the codeword (0/1), then the second bit and so on. The expected length is

T̄ ∗ = 2 · 8

23
+ 2 · 6

23
+ 2 · 4

23
+ 3 · 2

23
+ 4 · 2

23
+ 4 · 1

23
=

54

23
= 2.3478

The sequence to identify the fourth bottle is: Taste mixture of bottles 1 and 2 (result is no);
Taste bottle 3 (no); Taste bottle 4 (yes)

(b) i) The capacity of the channel is C = maxP I(X;Y ) where the maximum is over all input
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distributions over {0, 1, 2}. We have

I(X;Y ) = H(Y )−H(Y | X)

= H(Y )−
2∑

i=0

P (X = i)H(Y | X = i)

(a)
= H(Y )−

2∑
i=0

P (X = i)H({0.7, 0.2, 0.1})

= H(Y )− 1.157.

Equality (a) above holds because each row of the transition probability matrix is a permutation
of {0.7, 0.2, 0.1} and hence has the same entropy. Now H(Y ) ≤ log2 3 with equality of all the Y
symbols have equal probability (13), which is achieved with an equiprobable input distribution:
P (X = 0) = P (X = 1) = P (X = 2) = 1

3 . Therefore, C = log2 3− 1.157 = 0.428 bits.

ii) Fano’s inequality (in the information databook) gives a lower bound on the probability of
error Pe:

Pe ≥
H(X|Y )− 1

log2|X |
=
H(X|Y )− 1

log2 3
. (1)

To calculate H(X|Y ) we can use the chain rule: H(X|Y )+H(Y ) = H(X)+H(Y |X). This gives

H(X|Y ) = H(X) +H(Y |X)−H(Y ) = H({0.4, 0.2, 0.4}) + 1.157−H(Y ) = 1.5219 + 1.157−H(Y )

where we use the value of H(Y |X) computed above, noting that for this channel it does not
depend on the input distribution. To compute H(Y ), we calculate the output distribution

P (Y = 0) = PX(0)(0.7) + PX(1)(0.1) + PX(2)(0.2) = 0.38,

P (Y = 1) = PX(0)(0.2) + PX(1)(0.7) + PX(2)(0.1) = 0.26, P (Y = 2) = 0.36.

With this, we compute H(Y ) = 1.556, which gives H(X|Y ) = 1.1125. Using this in (1), we
obtain the lower bound Pe ≥ 0.0710.

Note: We can also use the stronger version of Fano’s inequality, for which the denominator in
(1) is log2|X − 1| (rather than log2|X |); see Q.1 in Examples Paper 3. This gives the improved
lower bound Pe ≥ 0.1125. (Either version receives full marks.)

Part (a).(i) was done correctly by most candidates. Part (a).(ii) was generally well-answered,
although some candidates did not realise that the optimal strategy was provided by Huffman coding.
Part (b).(i) we done correctly by most candidates. Several candidates did not realise that in order to
obtain the bound asked in Part (b).(ii) Fano’s inequality was needed.

Question 3

(a) i) An (n, k) channel code of rate R = k
n for the channel (X ,Y, PY |X) consists of:

• A set of messages {1, . . . , 2k = 2nR},
• An encoding function Xn : {1, . . . , 2nR} → X n that assigns a codeword to each message.

The set of codewords {Xn(1), . . . , Xn(2nR)} is called the codebook,

• A decoding function g : Yn → {1, . . . , 2nR}, which produces a guess of the transmitted
message for each received vector.

ii) The channel capacity formula is C = maxPX
I(X;Y ), where the maximum is computed over

all distributions over the input alphabet X . The channel coding theorem states that:

• Fix R < C and pick any ε > 0. Then, for all sufficiently large n there exists a length-n code
of rate R with error probability less than ε.
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• Conversely, any sequence of length-n codes of rate R with probability of error tending to 0
as n→∞ must have R ≤ C.

(b) i) With a uniform input distribution over the set of 4-bit sequences

H(Y | X) =
∑
x∈X

1

16
H(Y | X = x),

where X is the set of all 4-bit sequences. Now for any 4-bit input x, there are at most 4 possible
outputs. Therefore, we have H(Y | X = x) ≤ log2 4 = 2 for each x ∈ X . However, there are
some inputs such as x = 0000, for which the number of possible Y -sequences is smaller than 4:
for such inputs x, H(Y | X = x) is strictly smaller than 2. Therefore

H(Y | X) =
∑
x∈X

1

16
H(Y | X = x) < 2.

ii) With a uniform input distribution all 4-bit inputs are equally likely. Since each of the four
input bits is equally likely to be a 0 or 1, the deleted bit as well as the non-deleted bits are each
equally likely to be 0 or a 1. This means that the induced output distribution assigns equal
probability (1/8) to each of the 8 possible output sequences. Therefore H(Y ) = log2 8 = 3 bits.
Therefore, with a uniform input distribution,

I(X;Y ) = H(Y )−H(Y | X) = 3−H(Y | X) > 3− 2 = 1 bit,

where the inequality uses the result in part(i) above. Therefore, the capacity C which is the
mutual information (maximized over all input distributions) is strictly greater than 1 bit.

iii) The key is to observe that the four inputs with non-zero probability are non-confusable. This
can be seen by listing the the possible outputs for each of these:

0000→ {000}, 0011→ {011, 001}, 1100→ {100, 110}, 1111→ {111}.

With the given input distribution, since the output Y uniquely determines the input X, H(X |
Y ) = 0 and therefore

I(X;Y ) = H(X)−H(X | Y ) = log2 4− 0 = 2.

Since the capacity is the maximum over all possible input distributions, it is at least 2 bits.

iv) The input distribution in part (iii) does not use the outputs 101 and 010. We expect that an
optimal input distribution will induce an output distribution with nonzero probabilities over all
the 3-bit outputs. Hence we expect that above input distribution is not optimal, and therefore
the capacity is strictly greater than 2 bits. We expect that the optimal input distribution will
assign larger probability P (X = x) to inputs x that have smaller values of H(Y | X = x) (such
as 0000 and 1111), so as to minimize H(Y |X). (But this is just a heuristic, and needs to be
verified numerically).

Part (a) was surprisingly not well answered; most answers lacked precision in their description in
Part (a)(i) and statement of the channel coding theorem Part (a)(ii). Part (b).(i) was not answered
well by most candidates as some found it difficult to realise that for any x, H(Y |X = x) < 2. Part
(b)(ii) was answered correctly by many candidates. Some candidates realised that H(Y |X = x) = 0
for every x in Part (b)(iii), but not all. The discussion in Part (b)(iv) was mixed.
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Question 4

(a) Code dimension k = 3, rate R = 1
2 .

(b)

 1 1 0 1 0 0
0 1 0 0 1 1
0 1 1 1 0 1

 R3=R1+R3−→

 1 1 0 1 0 0
0 1 0 0 1 1
1 0 1 0 0 1

 R2=R2+R3−→

 1 1 0 1 0 0
1 1 1 0 1 0
1 0 1 0 0 1

 = Hsys

(c) If Hsys = [P T | I], then Gsys = [I | P ] =

 1 0 0 1 1 1
0 1 0 1 1 0
0 0 1 0 1 1


There are 8 codewords of the form [x1, x2, x3]Gsys, for x1, x2, x3 ∈ {0, 1}. The codewords are
[0, 0, 0, 0, 0, 0], [1, 0, 0, 1, 1, 1], [0, 1, 0, 1, 1, 0], [0, 0, 1, 0, 1, 1], [1, 1, 0, 0, 0, 1], [1, 0, 1, 1, 0, 0], [0, 1, 1, 1, 0, 1],
and [1, 1, 1, 0, 1, 0].

(d) Factor graph: v1

v2

v3

v4

v5

v6

c1

c2

c3

(e) (i) A maximum likelihood codeword is any of the codewords with smallest Hamming distance from
the received word, e.g. [1, 1, 1, 0, 1, 0] ([0, 1, 1, 1, 0, 1] and [1, 0, 0, 1, 1, 1] are also valid answers.)

ii) We have

P (v3 = 0 | y)

P (v3 = 1 | y)
=

∑
c:v3=0 P (y | c)∑
c:v3=1 P (y | c)

=
(0.2)6 + (0.2)2(0.8)4 + 2(0.2)3(0.8)3

2(0.2)2(0.8)4 + 2(0.2)3(0.8)3
=

0.0246

0.0410
= 0.6.

In the above, the second equality is obtained by noting that codewords 1,2,3, and 5 have a 0 in
the third bit, and codewords 4,6,7,8 have a 1 in the third bit. Since the likelihood ratio is larger
than 1, the bit is decoded as a 1.

iii) The third code bit connected only to the third check node. Therefore, the final LLR for the
third code bit is

L3 = L(y3) + Lc3→v3 ,

where L(y3) is the channel LLR for the third code bit (based on y3), and Lc3→v3 is the message
sent by the third check node to the third v-node. We have

L(y3) = ln
P (y3 = 1 | c3 = 0)

P (y3 = 1 | c3 = 1)
= ln

0.2

0.8
= −1.386.

The message Lc3→v3 is determined by the initial LLRs received from v2, v4, v6 (the v-nodes other
than v3 connected to the third check node):

Lc3→v3 = 2 tanh−1

[(
tanh

−1.386

2

)3
]

= −0.439

Hence L3 = L(y3) +Lc3→v3 = −1.825. Since the final LLR is negative, the third code bit will be
decoded as a 1.
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iv) The log of the likelihood ratio we computed in part (ii) is L?
3 = −0.5108, which has the same

sign of the LLR L3 computed by one iteration of the sum product algorithm in (iii). Accordingly,
the two decoders agree on the value of bit 3. Since variable 3 is only involved in one check node in
the factor graph, after one iteration the sum-product decoder only has the contribution from that
parity-check equation, which happens to be satisfied by the received word whereas the other two
parity-check equations aren’t. The two decoders operate differently. The bitwise optimal decoder
takes into account the whole codebook, while sum-product decoding takes only local information
into account. If further iterations of the sum-product decoder were performed, it may well be
that the magnitude of the LLR becomes similar to that of the bitwise optimal decoder.

Generally well-answered question, although very few candidates scored full marks. Most candidates
correctly answered Parts (a), (b), (c), (d) and (e)(i). Very few candidates derived the optimal bitwise
decoder in Part (e)(ii) and instead calculated the uncoded likelihood. Many candidates answered
correctly Part (e)(iii). The discussion in Part (e)(iv) was mixed, as a result of many candidates
considering the uncoded likelihood in Part (e)(ii).
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