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1 A data scientist uses a generative classifier to predict the binary label 𝑦 ∈ {0, 1}
from the scalar feature 𝑥 ∈ R. The forms of 𝑝(𝑦) and 𝑝(𝑥 |𝑦) are known and given by

𝑝(𝑦) =
{

0.4 if 𝑦 = 1
0.6 if 𝑦 = 0

, 𝑝(𝑥 |𝑦) = N(𝑥 |𝑚𝑦, 1) =
1

√
2𝜋

exp

{
−
(𝑥 − 𝑚𝑦)2

2

}
,

where 𝑚0 and 𝑚1 are two scalar mean parameters.

(a) Assuming that 𝑚0 and 𝑚1 are known, write down an expression for the classifier’s
predictive probability 𝑝(𝑦 = 1|𝑥). Write your expression using the notation N(𝑥 |𝑚, 𝑣) to
represent a Gaussian density with mean 𝑚 and variance 𝑣 evaluated at 𝑥. [25%]

(b) The data scientist introduces the following prior for 𝑚0 and 𝑚1:

𝑝(𝑚0, 𝑚1) = N(𝑚0 |0, 1) × N (𝑚1 |0, 1) =
1

√
2𝜋

exp

{
−
𝑚2

0
2

}
× 1
√

2𝜋
exp

{
−
𝑚2

1
2

}
.

Given a data point (𝑥𝑛, 𝑦𝑛), write down an expression for the posterior distribution of 𝑚0
and 𝑚1 as a product of Gaussian densities using the notation N(𝑥 |𝑚, 𝑣) as before. Do not
calculate the value of the normalisation constant for the posterior and write 𝑍 instead. [25%]

(c) The data scientist observes a dataset D = {(𝑥𝑛, 𝑦𝑛)}𝑁𝑛=1 containing 𝑁 data points.
According to the generative classifier, the log-likelihood for 𝑚0 and 𝑚1 is

𝐿 (𝑚0, 𝑚1) =
𝑁∑︁
𝑛=1

−𝐼 [𝑦𝑛 = 0] × 1
2
(𝑥𝑛 − 𝑚0)2 −

𝑁∑︁
𝑛=1

𝐼 [𝑦𝑛 = 1] × 1
2
(𝑥𝑛 − 𝑚1)2 + constant ,

where 𝐼 [·] is equal to 1 if its input is true and 0 otherwise. Using this result, write down
an expression for the maximum a posteriori estimates of 𝑚0 and 𝑚1 given D. [25%]

(d) The maximum a posteriori estimates of𝑚0 and𝑚1 are given by �̂�0 = 1 and �̂�1 = −1.
The data scientist then uses the classifier to make predictions using these estimates and
the following loss (negative reward) function:

𝐿 (𝑦, �̂�) =


0 if 𝑦 = 0 and �̂� = 0
2 if 𝑦 = 0 and �̂� = 1
1 if 𝑦 = 1 and �̂� = 0
0 if 𝑦 = 1 and �̂� = 1

,

where 𝑦 is the true class label and �̂� is the classifier’s prediction. What is the classifier’s
decision boundary in this case? Hint: The decision boundary is the input 𝑥 at which
predicting one class or the other yields the same expected loss. [25%]
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(a) Using Bayes rule we obtain

𝑝(𝑦 = 1|𝑥) = 𝑝(𝑥 |𝑦 = 1)𝑝(𝑦 = 1)
𝑝(𝑥) =

N(𝑥 |𝑚1, 1)0.4
N(𝑥 |𝑚0, 1)0.6 + N(𝑥 |𝑚1, 1)0.4

. (1)

[25%]

(b) The posterior is given by the product of the likelihood and the prior. In particular,

𝑝(𝑚0, 𝑚1 |𝑥𝑛, 𝑦𝑛) ∝ 𝑝(𝑥𝑛 |𝑦𝑛, 𝑚𝑦𝑛)𝑝(𝑦𝑛)𝑝(𝑚0)𝑝(𝑚1)
∝ N (𝑥𝑛 |𝑚𝑦𝑛 , 1)N (𝑚0 |0, 1)N (𝑚1 |0, 1) . (2)

Therefore,

𝑝(𝑚0, 𝑚1 |𝑥𝑛, 𝑦𝑛) =
N(𝑥𝑛 |𝑚𝑦𝑛 , 1)N (𝑚0 |0, 1)N (𝑚1 |0, 1)

𝑍
. (3)

[25%]

(c) The log posterior for 𝑚0 and 𝑚1 is given by,

𝐿𝑃(𝑚0, 𝑚1) =
𝑁∑︁
𝑛=1

−𝐼 [𝑦𝑛 = 0] 1
2
(𝑥𝑛 − 𝑚0)2 −

𝑁∑︁
𝑛=1

𝐼 [𝑦𝑛 = 1] 1
2
(𝑥𝑛 − 𝑚1)2

−
𝑚2

0
2

−
𝑚2

1
2

+ constant . (4)

The quantity above is maximized when the gradient with respect to 𝑚0 and 𝑚1 is zero.
That is,

�̂�0 =

∑𝑁
𝑛=1 𝐼 [𝑦𝑛 = 0]𝑥𝑛∑𝑁
𝑛=1 𝐼 [𝑦𝑛 = 0] + 1

, �̂�1 =

∑𝑁
𝑛=1 𝐼 [𝑦𝑛 = 1]𝑥𝑛∑𝑁
𝑛=1 𝐼 [𝑦𝑛 = 1] + 1

, (5)

[25%]

(d) The classifier’s decission boundary is the input 𝑥 at which predicting one class or
the other yields the same loss. That is,∑︁

𝑦

𝐿 (𝑦, �̂� = 1)𝑝(𝑦 |𝑥) =
∑︁
𝑦

𝐿 (𝑦, �̂� = 0)𝑝(𝑦 |𝑥)

𝐿 (𝑦 = 0, �̂� = 1)𝑝(𝑦 = 0|𝑥) = 𝐿 (𝑦 = 1, �̂� = 0)𝑝(𝑦 = 1|𝑥)
𝐿 (𝑦 = 0, �̂� = 1)
𝐿 (𝑦 = 1, �̂� = 0) =

𝑝(𝑦 = 1|𝑥)
𝑝(𝑦 = 0|𝑥)

2 =
N(𝑥 |�̂�1, 1)0.4
N(𝑥 |�̂�0, 1)0.6
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3 = exp
{
−0.5(𝑥 − �̂�1)2 + 0.5(𝑥 − �̂�0)2

}
𝑥 ≈ −0.5986 .

[25%]
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2 A product of experts model makes predictions for a quantity of interest by multiplying
the predictive densities of individual experts. Consider a regression problem and a total
of 𝐸 experts given by linear models with additive Gaussian noise, parameter vectors
w1, . . . ,w𝐸 and non-linear feature transformation functions 𝜙1(·), . . . , 𝜙𝐸 (·), respectively.
In this case, the product of experts predictions are given by

𝑝(𝑦𝑛 |x𝑛) ∝
𝐸∏
𝑒=1

N(𝑦𝑛 |wT
𝑒 𝜙𝑒 (x𝑛), 𝜎2

𝑒 ) ,

where 𝜎2
𝑒 is the variance of the zero-mean additive Gaussian noise assumed by expert 𝑒.

(a) It can be shown that 𝑝(𝑦𝑛 |x𝑛) is Gaussian:

𝑝(𝑦𝑛 |x𝑛) = N(𝑥 |𝑚, 𝑣) = 1
√

2𝜋𝑣
exp

(
− (𝑥 − 𝑚)2

2𝑣

)
.

Give an expression for 𝑚 and 𝑣 in terms of the means and variances of the individual
experts, that is, wT

𝑒 𝜙𝑒 (x𝑛) and 𝜎2
𝑒 , 𝑒 = 1, . . . , 𝐸 . For this, use the following property

of the product of Gaussian densities: N(𝑥 |𝑚1, 𝑣1) × N (𝑥 |𝑚2, 𝑣2) ∝ N (𝑥 |𝑚3, 𝑣3), where
𝑣−1

3 = 𝑣−1
1 + 𝑣−1

2 and 𝑚3/𝑣3 = 𝑚1/𝑣1 + 𝑚2/𝑣2. Will 𝑣 increase or decrease as one more
expert is added into the model? [25%]

(b) Under some specific choice of transformation functions 𝜙1, . . . , 𝜙𝐸 , the training
error of a product of experts model that is fitted to the data by maximum likelihood can
be made arbitrarily small by just increasing the number of experts in the model. However,
using a very large number of experts may not be a good idea in practice. Why? [25%]

(c) Consider now an alternative mixture of experts model that uses the same experts as
the model above and has uniform mixing weights. The predictive distribution is now

𝑝(𝑦𝑛 |x𝑛) =
1
𝐸

{
𝐸∑︁
𝑒=1

N(𝑦𝑛 |wT
𝑒 𝜙𝑒 (x𝑛), 𝜎2

𝑒 )
}
.

What are the mean and variance of this predictive distribution? [25%]

(d) Jensen’s inequality says that for a convex function 𝜑, numbers 𝑥1, . . . , 𝑥𝑛 in its
domain, and positive weights 𝑎𝑖, 𝜑(

∑
𝑖 𝑎𝑖𝑥𝑖/

∑
𝑖 𝑎𝑖) ≤ ∑

𝑎𝑖𝜑(𝑥𝑖)/
∑
𝑖 𝑎𝑖. Using this and

the fact that the quadratic function is convex, or otherwise, show that the variance of the
predictive distribution for the previous mixture of experts model has to be greater than or
equal to the minimum of 𝜎2

1 , . . . , 𝜎
2
𝐸

. Using this fact and the response to part (a) above,
justify why the product of experts model may be preferred over the mixture of experts one.

[25%]
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(a) The mean of the 𝑒-th Gaussian in our product is 𝑚𝑒 = w𝑇
𝑒 𝜙𝑒 (x𝑛). The variance is

𝑣𝑒 = 𝜎2
𝑒 . Let 𝛼 =

∑
𝑒 𝑣

−1
𝑒 and let 𝛽 =

∑
𝑒 𝑚𝑒/𝑣𝑒. The product of Gaussians is then

𝐸∏
𝑒=1

N(𝑦𝑛 |𝑚𝑒, 𝑣𝑒) ∝ N (𝑦𝑛, 𝛽𝛼−1, 𝛼−1) . (6)

The product is a Gaussian density with mean 𝑚 = 𝛽𝛼−1 and variance 𝑣 = 𝛼−1. When
you add one more expert into the mixture, the variance 𝑣 = 𝛼−1 will decrease, since
𝛼 =

∑
𝑒 𝑣

−1
𝑒 will increase as we add one more positive element into this sum. [25%]

(b) The training error will be made arbitrarily small by increasing the number of experts
but this could cause overfitting problems as the model fits noise in the training data and the
test error increases beyond an optimal value obtained with a smaller number of experts. [25%]

(c) The mean of the predictive distribution is given by

E𝑝(𝑦𝑛 |x𝑛) [𝑦𝑛] =
1
𝐸

∑︁
𝑒

wT
𝑒 𝜙𝑒 (x𝑛) . (7)

The second moment is given by

E𝑝(𝑦𝑛 |x𝑛) [𝑦
2
𝑛] =

1
𝐸

∑︁
𝑒

(
(wT

𝑒 𝜙𝑒 (x𝑛))2 + 𝜎2
𝑒

)
. (8)

The variance is, therefore, given by

VAR𝑝(𝑦𝑛 |x𝑛) [𝑦𝑛] =
1
𝐸

∑︁
𝑒

(
(wT

𝑒 𝜙𝑒 (x𝑛))2 + 𝜎2
𝑒

)
−

(
1
𝐸

∑︁
𝑒

wT
𝑒 𝜙𝑒 (x𝑛)

)2

. (9)

[25%]

(d) Let’s denote by 𝑚𝑒 the mean of the predictions by expert 𝑒. Then

VAR𝐸
𝑝(𝑦𝑛 |x𝑛) [𝑦𝑛] =

1
𝐸

∑︁
𝑒

𝑚2
𝑒 +

1
𝐸

∑︁
𝑒

𝜎2
𝑒 −

(
1
𝐸

∑︁
𝑒

𝑚𝑒

)2

≥ 1
𝐸

∑︁
𝑒

𝜎2
𝑒 ≥ min{𝜎2

1 , . . . , 𝜎
2
𝐸 } , (10)

where we have used that

1
𝐸

∑︁
𝑒

𝑚2
𝑒 ≥

(
1
𝐸

∑︁
𝑒

𝑚𝑒

)2

, (11)
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which is obtained by using Jensen’s inequality and the fact that the quadratic function is
convex. The product of experts is preferred because adding new experts always makes the
predictive distribution sharper. This does not happen with the mixture of experts as the
predictive variance can never be smaller than the minimum predictive variance of one of
its experts. [25%]
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3 Consider a regression dataset {(𝑥𝑛, 𝑦𝑛)}𝑁𝑛=1 and a linear regression model with
coefficients 𝜽 ∈ R𝑑 and Gaussian additive noise with variance 𝜎2. Let 𝛀 = {𝜽 , 𝜎2} be
the set of model parameters. The likelihood for the 𝑛-th data point is then given by

𝑝(𝑦𝑛 |𝑥𝑛,𝛀) = N(𝑦𝑛 | 𝑓 (𝑥𝑛; 𝜽), 𝜎2) , where 𝑓 (𝑥𝑛; 𝜽) =

𝑑∑︁
𝑖=1

𝜙𝑖 (𝑥𝑛)\𝑖

with the 𝜙𝑖 being non-linear basis functions. The model is fitted with respect to both 𝜽

and 𝜎2 using maximum likelihood, giving the following estimates for these parameters:

𝜽ML = (𝚽⊤𝚽)−1𝚽⊤y , �̂�2
ML =

1
𝑁

𝑁∑︁
𝑛=1

(𝑦𝑛 − 𝑓 (𝑥𝑛; 𝜽ML))2 ,

where 𝚽 is the 𝑁 × 𝑑 matrix given by [𝚽]𝑛𝑖 = 𝜙𝑖 (𝑥𝑛) and y is an 𝑁-dimensional vector
containing all the 𝑦𝑛. After fitting the model, the training residuals Ŷ𝑛 = 𝑦𝑛 − 𝑓 (𝑥𝑛; 𝜽ML)
are calculated and it is noticed that a small proportion of them have much larger magnitude
than the others as shown in the following plot:

(a) Explain the negative effect that these large residuals will have in 𝜽ML and �̂�2
ML as

compared to the case when no such large residuals are present in the data. [25%]

(b) To alleviate the problems caused by the large residuals, a latent binary variable ℎ𝑛 is
introduced for each data point to distinguish between regular magnitude (ℎ𝑛 = 0) and large
magnitude (ℎ𝑛 = 1) residual data points. The same 𝑓 is used for both types of data points.
Write an expression for the new likelihood 𝑝(𝑦𝑛 |𝑥𝑛,𝛀, ℎ𝑛) and a probability distribution
for the prior 𝑝(ℎ𝑛). What parameters, in addition to 𝜽 , does this new model have? [25%]

(c) The new model is fitted using the EM algorithm. State the E-step. [25%]

(d) State the M-step for 𝜽 when all the other model parameters are kept fixed. [25%]
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(a) The large residuals may cause �̂�2
𝑀𝐿

to be too high for the majority of the data points
with small residuals. At the same time, �̂�2

𝑀𝐿
may be too low for the few data points with

large residuals. Regarding 𝜽ML, the large residuals may also increase the error in this
estimate as these few data points will account for most of the squared errors of the model.

[25%]

(b) The new likelihood is

𝑝(𝑦𝑛 |𝑥𝑛,𝛀, ℎ𝑛) = (1 − ℎ𝑛)N (𝑦𝑛 | 𝑓 (𝑥𝑛; 𝜽), 𝜎2
0 ) + ℎ𝑛N(𝑦𝑛 | 𝑓 (𝑥𝑛; 𝜽), 𝜎2

1 ) . (12)

The prior is 𝑝(ℎ𝑛) = 𝜋1−ℎ𝑛 (1 − 𝜋)ℎ𝑛 . In addition to 𝜽 , the model has now two noise
variances 𝜎2

0 and 𝜎2
1 for regular and large magnitude residual data points and mixing

proportion 𝜋 indicating the prior probability that a point has a regular magnitude residual.
That is, 𝛀 = {𝜽 , 𝜎2

0 , 𝜎
2
1 , 𝜋}. [25%]

(c) The E step calculates the posterior distribution of the binary latent variables, that is,

𝑞(ℎ𝑛) ∝ 𝑝(𝑦𝑛 |𝑥𝑛, 𝜽 , ℎ𝑛)𝑝(ℎ𝑛) . (13)

In particular, we have that

𝑞(ℎ𝑛 = 0) =
𝜋N(𝑦𝑛 | 𝑓 (𝑥𝑛; 𝜽), 𝜎2

0 )
𝜋N(𝑦𝑛 | 𝑓 (𝑥𝑛; 𝜽), 𝜎2

0 ) + (1 − 𝜋)N (𝑦𝑛 | 𝑓 (𝑥𝑛; 𝜽), 𝜎2
1 )

,

𝑞(ℎ𝑛 = 1) =
(1 − 𝜋)N (𝑦𝑛 | 𝑓 (𝑥𝑛; 𝜽), 𝜎2

1 )
𝜋N(𝑦𝑛 | 𝑓 (𝑥𝑛; 𝜽), 𝜎2

0 ) + (1 − 𝜋)N (𝑦𝑛 | 𝑓 (𝑥𝑛; 𝜽), 𝜎2
1 )

. (14)

[25%]

(d) The M step for 𝜽 maximises the log of the likelihood times prior averaged with
respect to the latents

max
𝜽

∑︁
𝑛

∑︁
ℎ𝑛

𝑞(ℎ𝑛) log {𝑝(𝑦𝑛 |𝑥𝑛,𝛀, ℎ𝑛)𝑝(ℎ𝑛)} . (15)

Taking derivative wrt to 𝜽 and setting to zero to find the maximum∑︁
𝑗

(𝚽⊤H 𝑗y −𝚽⊤H 𝑗𝚽𝜽)/𝜎2
𝑗 = 0 , (16)

where H 𝑗 is a diagonal matrix with entries in its diagonal given by 𝑞(ℎ𝑛 = 𝑗) with 𝑗 = 0, 1.
The final solution is

𝜽 = (
∑︁
𝑗

𝚽⊤H 𝑗/𝜎2
𝑗𝚽)−1

∑︁
𝑗

𝚽⊤H 𝑗/𝜎2
𝑗 y . (17)

[25%]
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4 A scalar linear dynamical system evolves according to

𝑥𝑡 = _1𝑥𝑡−1 + _2𝑥𝑡−2 + 𝜎𝜖𝑡 , (18)

where the 𝜖𝑡 are independent and identically distributed with 𝜖𝑡 ∼ N(0, 1).

(a) What is the Markov order of this system, and why? [20%]

(b) If _1 were set to be zero in equation (18), what would then be the relationship
between states 𝑥𝑡 at odd and even times? [20%]

(c) Re-write the system in equation (18) as a first order system in a new vector-valued
variable z𝑡 such that

z𝑡 = Az𝑡−1 + e𝑡 , where e𝑡 ∼ N(0,Q) .

In this expression, A and Q are matrices and z𝑡 and e𝑡 vectors. Write z𝑡 , A and Q in terms
of quantities from equation (18). [20%]

(d) A dynamical system is unstable if its state grows without bound with time. What
are the conditions of stability for the previous system in terms of the eigenvalues of A? [20%]

(e) An observation vector y𝑡 is obtained from z𝑡 as follows:

y𝑡 = Bz𝑡 + s𝑡 , where s𝑡 ∼ N(0,T)

and B and T are matrices. Write down an expression for 𝑝(y𝑡 |z𝑡−1). [20%]
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(a) It’s a second order system because the state depends on the two preceding states. [20%]

(b) If _1 = 0 then the states at odd times are completely independent of states at even
times; there are effectively two independent dynamical systems. [20%]

(c) The new state variable has to be two dimensional z𝑡 = (𝑥𝑡 , 𝑥𝑡−1)⊤. We have

A =

[
_1 _2
1 0

]
, and Q =

[
𝜎2 0
0 0

]
, (19)

which can be verified by writing out coordinate-wise. [20%]

(d) The state can only grow unboundedly if the matrix A has eigenvalues with magnitude
larger than 1. The condition for stability is that both eigenvalues are between -1 and 1. [20%]

(e) Because y𝑡 is obtained through a linear Gaussian model as a function of z𝑡 , we have
that

𝑝(y𝑡 |z𝑡−1) =
∫

𝑝(y𝑡 |z𝑡)𝑝(z𝑡 |z𝑡−1) 𝑑z𝑡 . (20)

To solve this integral we note that z𝑡 |z𝑡−1 ∼ N(Az𝑡−1,Q). Since

y𝑡 = Bz𝑡 + s𝑡 , where s𝑡 ∼ N(0,T) , (21)

we then have that
y𝑡 |z𝑡−1 ∼ N(BAz𝑡−1,BQBT + T) . (22)

[20%]

END OF PAPER
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