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Module 3F8

INFERENCE

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed.
Engineering Data Book.

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.
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1 (a) An engineer has obtained a noisy measurement y of the potential energy
in a spring which has spring constant k and extension x, that is y = 1

2 k x2 + ε . The
measurement noise ε is drawn from a standard Gaussian distribution p(ε ) = N (ε ; 0,1).
A priori the spring extension is assumed to follow a Gaussian distribution, that is
p(x) = N (x; 0,σ2).

(i) Derive the maximum a posteriori (MAP) estimate for the extension x, starting
from the definition of the MAP estimate. [40%]

(ii) What happens to the maximum a posteriori (MAP) estimate for the extension
x as σ2 → ∞ ? Explain this behaviour and how it relates to the maximum likelihood
estimate of x. [10%]

(b) Two noisy depth sensors measure the distance to an object an unknown distance d
metres away. The depth is assumed, a priori, to be distributed according to a distribution
p(d). The depth sensors return two noisy measurements of the depth, y1 and y2, whose
conditional distribution is denoted p

(
y1, y2 |d

)
.

(i) Show how Bayes’ rule can be used to compute the posterior distribution over
the depth given the two noisy measurements, p(d |y1, y2). [10%]

(ii) The depth can be now be assumed, a priori, to be distributed according to
a standard Gaussian distribution p(d) = N (d; 0,1) and the noisy measurements
can be assumed to be distributed according to a multivariate Gaussian distribution
centred on the unknown distance, that is

p
(
y1, y2 |d

)
= N *

,



y1
y2


;


d
d


, Σ+

-
where Σ−1 =



1 α

α 1


Compute the posterior distribution p(d |y1, y2) for this case. [30%]

(iii) Compare the posterior uncertainty when α = 0 and 1 > α > 0. Explain what
is happening. [10%]

The formula for the probability density of a multivariate Gaussian distribution over a
variable x of mean µ and covariance Σ is given by

N (x; µ,Σ) =
1

√
det(2πΣ)

exp
(
−

1
2

(x − µ)>Σ−1(x − µ)
)
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2 (a) A data scientist is fitting a linear regression model to a data set comprising
N scalar outputs yn and scalar inputs xn. The data scientist uses a simple model in
which each output is produced by multiplying the input by a scalar weight w and adding
independent Gaussian noise with mean 0 and variance σ2, that is

yn = wxn + εn where εn ∼ N (0,σ2)

(i) Write down the likelihood of the parameters w and σ2. [10%]

(ii) Find the maximum likelihood setting for w. [20%]

(iii) The data scientist would like to apply the model to a setting where data are
continuously arriving. For privacy reasons, the data scientist is not allowed to store
old data indefinitely. However, it is permitted to store quantities that are averaged
over old data points. Denoting a new data point as {xN+1, yN+1} and the old data
as {xn, yn}

N
n=1, derive a sequential algorithm which returns the maximum likelihood

setting for w through incrementally updated averaged quantities. [20%]

(b) The data scientist would like to extend the regression model described in part (a). In
addition to estimating the weights using maximum-likelihood estimation, they would like
to also infer the noise variance σ2 using maximum a posteriori estimation with a prior

p(σ2 |α, β) =
1

Z (α, β)
1

(σ2)α
exp

(
−
β

σ2

)
where the scalar parameters of the prior distribution are α > 1 and β > 0. Z (α, β) is a
normalising constant.

(i) Derive the MAP estimate for σ2 . [35%]

(ii) Provide an interpretation for the prior parameters α and β that will help the
data scientist select suitable values for these parameters. [15%]
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3 A data scientist is fitting a clustering model to a data set comprising N data points
{xn}

N
n=1. Each data point is a D dimensional vector comprising binary values i.e. each

element xn,d ∈ {0,1}. In the generative model, each cluster is assumed to be equally
probable a priori, that is the latent cluster membership variable, sn ∈ {1,2, . . . ,K },
is drawn from a uniform categorical distribution p(sn = k) = 1/K where K is the
total number of clusters. Each element of each observed data point is then generated
from a Bernoulli distribution with a parameter determined by the cluster membership
p(xn,d = 1|sn = k, πk,d ) = πk,d . The data scientist would like to use the EM algorithm to
fit the model to the data set.

(a) Define the E-step of the EM algorithm. Calculate the E-step update for the model
above, leaving your answer in a form which is suitable for implementation. [30%]

(b) The data scientist would like to use a hard E-step in which each data point is
assigned to just the most probable cluster. Discuss whether this hard E-Step has an
interpretation in terms of distance minimisation similar to the assignment step of the k-
means algorithm. [25%]

(c) Define the M-step of the EM algorithm. Calculate the M-step update for the model
described above when using a soft E-Step, leaving your answer in a form which is suitable
for implementation. [30%]

(d) If the E-Step assignment is instead a hard assignment to the most probable cluster,
describe what form the M-Step takes. [15%]

For reference the variational free-energy for a model with parameters θ and categorical
latent variables {sn}

N
n=1 is given by

F (θ, {q(sn)}Nn=1) =
N∑

n=1

K∑
k=1

q(sn = k) log
p(sn = k,xn |θ)

q(sn = k)

=

N∑
n=1

[
log p(xn |θ) − KL(q(sn) | |p(sn |xn, θ))

]
where q(sn) is an arbitrary distribution over the categorical variable sn, and

KL(q(sn) | |p(sn |xn, θ)) =
K∑

k=1
q(sn = k) log

q(sn = k)
p(sn = k |xn, θ)
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4 The scalar variables x1:T = {x1, x2, . . . , xT } are distributed according to a Gaussian
AR(1) process.

(a) Define the Gaussian AR(1) process mathematically. [10%]

(b) Let zt =
∑t

t′=1 xt′ so that z1 = x1, z2 = x1 + x2, z3 = x1 + x2 + x3 and so on.
Show that z1:T = {z1, z2, . . . , zT } follows a Gaussian AR process and find the parameters
for this process. [40%]

(c) Define a Linear Gaussian State Space Model (LGSSM) with observed variables yt

and latent variables st . Your answer should clearly specify the parameters of the model. [10%]

(d) At each time-step, noisy observations are made of the variables xt and zt defined
above so that

yt =


xt

zt


+ ηt

The measurement noise ηt is drawn from a two dimensional multivariate Gaussian
distribution with zero mean and identity covariance ηt ∼ N (0, I).

Explain how to rewrite this model as a LGSSM with a first order Markov hidden state. [30%]

(e) Suggest an algorithm that could be used to infer the most likely trajectory z∗1:T given
the observations y1:T where

z∗1:T = arg max
z1:T

p(z1:T |y1:T )

Explain your reasoning. [10%]

END OF PAPER
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Selected short numerical answers

1a) if y ≥ 1
kσ2 then xMAP = ±

√
2y
k −

2
k2σ2 else xMAP = 0

1b) ii) σ2
d |y1,y2

= 1
3+2α and µd |y1,y2 =

1
3+2α (1 + α)(y1 + y2)

2b) i) σ2
MAP =

β+1
2
∑N

n=1(yn−wMAPxn)2

α+N/2
4b) zt = (1 + λ)zt−1 − λzt−2 + σε t
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