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EGT2
ENGINEERING TRIPOS PART IIA

Tuesday 4 May 2021 9.00 to 10.40

Module 3G2

MATHEMATICAL PHYSIOLOGY
Answer:

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet and at the top of
each answer sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Books

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.
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1 (a) Consider the following enzymatic reaction:

S + E
𝑘1−⇀↽−
𝑘−1

C
𝑘2−→ P + E

Using a fast equilibrium assumption, find the expression of the rate 𝑉 of product P
formation as a function of the kinetic constants, concentration of substrate [S] and total
enzyme concentration 𝐸0.
What information can be obtained from the graph of 1/𝑉 as a function of 1/[S]? [30%]

Answer: Assuming fast equilibrium, we can define the constant:

[S] [E]
[C]

=
𝑘−1
𝑘1

≡ 𝐾

Assuming that the total amount of enzyme molecules is constant ([E] + [C] = 𝐸0), we obtain the following
expression:

⇒ [C] = 𝐸0
[S]

[S] + 𝐾

⇒ 𝑉 = 𝑘2𝐸0
[S]

[S] + 𝐾 (1)

1
𝑉

=
1

𝑉max
+ 𝐾

𝑉max

1
[S]

so a plot of 1/𝑉 vs. 1/[S] is a straight line with 𝑦-intercept 1/𝑉max and slope 𝐾/𝑉max.

(b) Consider now a situation where the enzyme is also able to react with H+ in the
solution, leading to an effect of the pH. The following enzymatic reactions capture such
interactions, where the symbol H represents the ion H+:

S + EH
𝑘1−⇀↽−
𝑘−1

EHS
𝑘2−→ P + EH

E + H
𝑘3−⇀↽−
𝑘−3

EH

EH + H
𝑘4−⇀↽−
𝑘−4

EH2

(i) Assuming that all reversible reactions reach their equilibrium quickly, write
an expression for the rate of product formation as a function of the substrate
concentration and concentration of H+. [40%]
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Answer: Let’s define ℎ and 𝑠 as the concentration of H+ and the substrate, respectively, as well as a
new set of constants for this problem:

𝐾1 =
𝑠 [EH]
[EHS]

𝐾3 =
ℎ [E]
[EH]

𝐾4 =
ℎ [EH]
[EH2]

We look for the rate 𝑉 = 𝑘2 [EHS]. So we need to find [EHS].
The total amount of enzyme is conserved and provides a useful equation.
[E] + [EH] + [EH2] + [EHS] = 𝐸0

We now need to express all these concentrations as a function of [EHS], using the equilibrium
constants defined above.
We get after some algebra:

[EHS]
(
1 + 𝐾1

𝑠

(
1 + 𝐾3

ℎ
+ ℎ

𝐾4

))
= 𝐸0

This leads to:
𝑉 = 𝑘2𝐸0

[S]
[S] + 𝐾eff (ℎ)

with 𝐾eff (ℎ) = 𝐾1

(
1 + 𝐾3

ℎ
+ ℎ

𝐾4

)
(ii) Sketch how the rate, for a given substrate concentration, depends on the pH.
If there is an optimum, find the pH of this optimum as a function of the constants
involved in the problem. [30%]

Answer: The larger 𝐾eff, the lower the rate. Rather than analysing the rate itself, it is equivalent to
study the behaviour of 𝐾eff with the pH, or here the concentration of H+, ℎ.
𝐾eff is the sum of a function that diverges for small of ℎ (in 1/ℎ) and one that increases linearly with
ℎ. We therefore anticipate a minimum for an intermediate value of ℎ. Let’s find this minimum:

𝑑𝐾eff
𝑑ℎ

= 𝐾1

(
−𝐾3

ℎ2 + 1
𝐾4

)
= 0 =⇒ ℎ2

min = 𝐾3𝐾4

The optimum pH is − 1
2 log10 (𝐾3𝐾4)
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2 (a) In deriving an ion channel’s current-voltage relationship (in either the GHK
or the Ohmic approximations) we assumed the system is at steady-state, i.e., that the ionic
concentrations and fluxes and the electric potential are everywhere time-independent, as
are their boundary conditions.

(i) Explain why it is nevertheless justified to use those current-voltage
relationships for studying the time-dependent dynamics of a neuron’s membrane
potential (which is the electric potential difference across the membrane’s ion
channels)? [10%]

Answer: This approximation is justified due to a separation of timescales between the timescales

of relaxation to steady-state for ionic concentrations and fluxes inside the channel and the typical

timescales of variation of a neuron’s membrane potential, with the latter timescales being much

larger than the former relaxation timescales. In other words, relaxation is very fast compared to

the temporal dynamics of the membrane potential. Thus ionic concentrations and fluxes and the

electric potential profile across the channel can be assumed to have reached or to be very near their

steady-state configurations given the instantaneous value of the (relatively) slowly varying membrane

potential.

(ii) Estimate the timescale of relaxation to steady-state in the ion channel electro-
diffusion problem, and compare it to the timescales of variation of the membrane
potential, such as the duration of an action potential. An order of magnitude
estimation of each quantity is sufficient. [20%]
Here are approximate values of some quantities which may, or may not, appear in
your estimations:

sodium ion channel length 10 nm
body temperature 310 K

Faraday’s constant 105 C/mol
diffusion coefficient of sodium ion in brain tissue 10−3 mm2/s

ratio of extra- to intracellular sodium concentrations 10

Answer: In the ion channel problem, the time it takes to reach steady-state is roughly given by the

time it takes an ion to diffuse across the channel. During a time 𝑡 an ion diffuses to a distance

𝐿 ∼
√
𝐷𝑡, so the time it takes to diffuse from one end of the channel to the other is given by 𝑡 ∼ 𝐿2

𝐷

where 𝐿 is the channel length. The latter is in the same order of magnitude as the thickness of the

cell membrane which is ∼ 10 nm = 10−5 mm. Taking our ion to be the sodium ion, for example, and

using 𝐷Na+ ∼ 10−3 mm2

s for the diffusion coefficient of sodium in brain tissue, we obtain a relaxation

timescale of order 10−7 s = 0.1 𝜇s. The duration of an action potential or its upstroke are 1-3

milliseconds, and thus the typical timescales of variation of the membrane potential are 4 orders of

magnitude slower than the timescale of relaxation to steady-state.
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(b) Consider a single-compartment model of a neuron with capacitance 𝐶 and 𝑛

different Ohmic transmembrane conductances, 𝑔1, 𝑔2, . . . , 𝑔𝑛, with reversal potentials
𝐸1, 𝐸2, . . . , 𝐸𝑛. Explain what happens to the resting potential and the membrane time
constant of the cell if we double all conductances, leaving all reversal potentials fixed. [20%]

Answer: The resting potential is given by 𝑉rest =
∑

𝑖 𝑔𝑖𝐸𝑖∑
𝑖 𝑔𝑖

while the membrane time constant is given by
𝜏𝑚 = 𝐶∑

𝑖 𝑔𝑖
. (These expressions can be obtained by writing the voltage equation

𝐶
𝑑𝑉

𝑑𝑡
=
∑︁
𝑖

𝑔𝑖 (𝐸𝑖 −𝑉) (2)

and dividing it by the total conductance,
∑

𝑖 𝑔𝑖 , yielding

𝜏𝑚
𝑑𝑉

𝑑𝑡
= 𝑉rest −𝑉 (3)

with 𝜏𝑚 and 𝑉rest given by the above expressions.) We thus see that doubling all 𝑔𝑖 will halve the membrane

time constant, while leaving the rest potential intact.

(c) This question is about the Hodgkin-Huxley model. Imagine molecular biologists
have invented a new technology for detailed engineering of ion channel proteins, which
allows you to selectively scale up or down the opening and closing rates of the different
gates of voltage-gated sodium and potassium channels. More precisely, you can scale
up or down each of the rates 𝛼𝑚 (𝑉), 𝛽𝑚 (𝑉), 𝛼ℎ (𝑉), 𝛽ℎ (𝑉), 𝛼𝑛 (𝑉), and 𝛽𝑛 (𝑉) of the
Hodgkin-Huxley model by (possibly different) voltage-independent and time-independent
factors. For each of the following desired changes in properties of the action potential,
answer (by providing appropriate reasoning) which rates you would scale up or scale down
to affect that change, while leaving other characteristics of the action potential unchanged
as much as possible:

(i) decrease the threshold potential for generation of action potential; [25%]

Answer: The action potential is initiated by triggering the positive feedback between the membrane

potential and the activating gate 𝑚(𝑡) of the sodium current. The spiking threshold is thus around the

voltage range over which the steady-state value, 𝑚∞ (𝑉), of the sodium activation variable switches

from 0 to 1. For concreteness, we will take the threshold to be the mid-point of this range, i.e., the

voltage at which 𝑚∞ (𝑉) = 1/2. Since 𝑚∞ (𝑉) = 𝛼𝑚 (𝑉 )
𝛼𝑚 (𝑉 )+𝛽𝑚 (𝑉 ) , the threshold is thus the voltage at

which the two curves 𝛼𝑚 (𝑉) and 𝛽𝑚 (𝑉) intersect. Since 𝛼𝑚 (𝑉) is an increasing function of 𝑉 and

𝛽𝑚 (𝑉) is a decreasing function of𝑉 , scaling up 𝛼𝑚 (𝑉) or scaling down 𝛽𝑚 (𝑉) will lower the𝑉-value

at which the curves intersect, and hence will lower the threshold (a simple sketch plot of these curves

could also be given to support this conclusion). (Intuitively too, increasing (decreasing) the tendency

of sodium channels to open (close) should make it easier to excite the cell to fire an action potential.)

On the other hand, we would like to keep 𝜏𝑚 (𝑉), the time constant of sodium activation (which
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controls the duration of the upstroke portion of the action potential), as unperturbed as possible.

Since 𝜏𝑚 (𝑉)−1 = 𝛼𝑚 (𝑉) + 𝛽𝑚 (𝑉), we can keep 𝜏𝑚 (𝑉) approximately unchanged across the relevant

voltage range (as much as possible) by appropriately scaling up 𝛼(𝑉) and scaling down 𝛽(𝑉).

(ii) extend the absolute refractory period. [25%]

Answer: The duration of the absolute refractory period is governed by the timescale of sodium

inactivation, 𝜏ℎ (𝑉), which is given by 1/(𝛼ℎ (𝑉) + 𝛽𝑚 (𝑉)). Scaling down either 𝛼ℎ (𝑉) or 𝛽ℎ (𝑉)
will thus extend the absolute refractory period. However, to make this perturbation as specific as

possible, we will scale down both 𝛼ℎ (𝑉) and 𝛽ℎ (𝑉) by the same factor, keeping the steady-state

inactivation ℎ∞ (𝑉) = 𝛼ℎ (𝑉 )
𝛼ℎ (𝑉 )+𝛽ℎ (𝑉 ) fixed.
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3 (a) The stomach contributes to the digestion of food by providing a highly acidic
environment. The inner surface of the stomach is lined with an epithelial layer whose cells
would not survive the low pH. Cell death is prevented thanks to the secretion of a thick
(≈ 1mm) and insoluble mucus. The epithelial cells also produce CO2 and the bicarbonate
ion HCO−

3 , which is believed to play an important role in the protection of the epithelial
tissue.

Explain how the production of HCO−
3 would help protect the epithelium from the acidic

environment of the stomach. [20%]

Answer: Under an acidic environment, the bicarbonate ion would react with H+ to produce more carbon
dioxide. This contributes to the diminution of the acidity. The relevant chemical reaction is:

CO2 + H2O
𝑘+

−⇀↽−
𝑘−

H+ + HCO−
3

(b) To model this process, we simplify the geometry as depicted in figure 1. The
epithelium is located at 𝑥 = 0 and the stomach lumen (where food is digested) starts at
𝑥 = 𝐿. The space in between is occupied by the mucus in which H+, HCO−

3 and CO2 are
able to diffuse, with coefficients of diffusion 𝐷ℎ, 𝐷𝑏 and 𝐷𝑐, respectively. Write (without
solving them) reaction-diffusion equations for the concentrations of H+, HCO−

3 and CO2
in the mucus region, assuming a steady-state is reached. [40%]

stomach

  lumen

mucus

 layer

epithelial cells

Fig. 1

Answer: Let’s define the following concentration profiles: 𝑐ℎ = [H+], 𝑐𝑏 = [HCO−
3 ] and 𝑐𝑐 = [CO2]. In the

steady state, there are no time derivative in the diffusion equation, but we need to account for the relevant
chemical reactions.
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𝐷ℎ

𝑑2𝑐ℎ

𝑑𝑥2 − 𝑘−𝑐ℎ𝑐𝑏 + 𝑘+𝑐𝑐 = 0

𝐷𝑏

𝑑2𝑐𝑏

𝑑𝑥2 − 𝑘−𝑐ℎ𝑐𝑏 + 𝑘+𝑐𝑐 = 0

𝐷𝑐

𝑑2𝑐𝑐

𝑑𝑥2 + 𝑘−𝑐ℎ𝑐𝑏 − 𝑘+𝑐𝑐 = 0

(c) Figure 2 shows the sketches of six different concentration profiles. Briefly justifying
your answers, indicate which one would correspond to:

(i) HCO−
3 ; [10%]

(ii) H+; [10%]

(iii) CO2. [10%]

Answer: The bicarbonate ion is produced by the epithelial cells, and would diffuse away. (a) and (d) satisfy
this constraint. Because H+ is in large quantity, we would not expect to have any residual bicarbonate in the
stomach lumen. So (a) would correspond to the bicarbonate ion.
H+ is at its largest concentration in the stomach lumen, with a gradient leading to a flux toward the epithelial
cells, so it would correspond to (e) or (f). Where the bicarbonate ion is present, it would react with it, and
decrease in concentration. Considering the reaction diffusion equations, we see that the second derivatives
of the concentration profiles are similar for both H+ and bicarbonate. The bicarbonate decreases less and
less with 𝑥, so H+ would increase more and more with 𝑥. So the answer would be (e).

CO2 is produced at the epithelium layer, and would diffuse outward. The graph (c) and (d) would lead to the

right direction of diffusion. This time, the reaction diffusion equations indicate that the second derivative

has the opposite sign compared to the bicarbonate ion. This is captured by the graph (c).

(d) Where on the 𝑥-axis do you expect the rate of reaction between the relevant species
to be the largest? [10%]

Answer: Each profile shows two linear regions with different slopes, left and right of a transition. These
correspond to the transport of the reactive species towards the place where they would primarily react. Based
on the reaction diffusion equations, we expect the rate of reaction to be related to the second derivative of
the concentration profiles. So the maximum reaction rate would be around the point where curvature is the
largest, i.e. between the two linear domains, i.e. roughly for 𝑥 ≈ 0.25𝐿.
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(a) (b) (c)

(d) (e) (f)

Fig. 2
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4 (a) Consider a cylindrical vessel of constant radius 𝑟 and length 𝐿. The vessel
wall is modelled as a 2D thin material. We assume that the tension in the vessel wall along
the vessel direction is negligible. Establish a relationship between the internal pressure 𝑃,
external pressure 𝑃𝑒 and tension 𝑇 (force per unit length) in the circumferential direction.

[20%]

Answer: Consider a small arc of the vessel of angle 𝑑𝜃 and forces acting on it. Pressure forces contribute an
outward force of magnitude 𝑑𝜃𝑟𝐿 (𝑃 − 𝑃𝑒). Tension forces at the ends of the arc (along 𝜃), projected along
the radial direction, would balance the pressure term:

2𝑇 sin(𝑑𝜃/2)𝐿 = 𝑑𝜃𝑟𝐿 (𝑃 − 𝑃𝑒)

For small angles, we get:

𝑃 − 𝑃𝑒 =
𝑇

𝑟

(b) Experimental data shows that, to the first order, the tension 𝑇 is an affine function
of the perimeter of the vessel cross-section:

𝑇 = 𝑘 (2𝜋𝑟 − 2𝜋𝑟0)

where 𝑟0 is the radius of the vessel in its relaxed state and 𝑘 is a constant. Use this
empirical expression to calculate the relationship between volume and pressure, to the first
order in 𝑟 − 𝑟0. [15%]

Answer: We have:

𝑃 − 𝑃𝑒 =
𝑘2𝜋(𝑟 − 𝑟0)

𝑟
= 2𝑘𝜋

𝑑𝑟

𝑟0 + 𝑑𝑟
= 2𝑘𝜋

𝑑𝑟

𝑟0
+𝑂 (𝑑𝑟2)

𝑉 = 𝜋𝑟2𝐿 = 𝜋𝐿 (𝑟0 + 𝑑𝑟)2 = 𝜋𝐿 (𝑟2
0 + 2𝑟0𝑑𝑟) +𝑂 (𝑑𝑟2)

𝑉 = 𝑉0 + 2𝜋𝐿𝑟0𝑑𝑟 +𝑂 (𝑑𝑟2)

𝑑𝑟 = 𝑟0
𝑃 − 𝑃𝑒

2𝑘𝜋

𝑉 = 𝑉0 + 2𝜋𝐿𝑟0𝑟0
𝑃 − 𝑃𝑒

2𝑘𝜋

𝑉 = 𝑉0 + 𝐿𝑟2
0
𝑃 − 𝑃𝑒

𝑘

(c) Briefly present the experimental observations that the Windkessel model is well
suited to qualitatively explain. [15%]

Page 10 of 12 (cont.



Version AJK/1

Answer: The Windkessel model is able to interpret the fact that the amplitude of pressure fluctuations

decreases faster than the mean pressure as blood progresses along the arteries, from the heart to the

capillaries.

(d) Introduce mathematically the Windkessel model and derive the relevant differential
equation for the overall flow rate in the capillaries 𝑄𝑅 (𝑡). [25%]

Answer: The model considers arteries as a single compliant chamber of volume 𝑉 (𝑡), which depend on
time. The volume is assumed to be linearly related to the internal pressure 𝑃(𝑡), assumed to be uniform in
the artery (i.e. no pressure waves). If 𝐶 is the vessel compliance, we have 𝑑𝑉 = 𝐶𝑑𝑃. The arteries lead
to the capillary beds which are modelled as a resistive component, with a flow rate 𝑄𝑅 proportional to the
pressure difference. The pressure beyond the capillaries and pressure around the arteries are assumed to be
the same (essentially atmospheric pressure) and set to 0. This leads to 𝑃 = 𝑅𝑄𝑅, where 𝑅 is a constant
accounting for the hydrodynamic resistivity of the capillary network.
The change of volume per unit time of the arteries is the difference of flow rate between the input from the
heart 𝑄(𝑡) and the output to the capillaries 𝑄𝑅 (𝑡):

𝑑𝑉/𝑑𝑡 = 𝑄 −𝑄𝑅

𝐶𝑑𝑃/𝑑𝑡 +𝑄𝑅 = 𝑄

𝑅𝐶𝑑𝑄𝑅/𝑑𝑡 +𝑄𝑅 = 𝑄

This leads to a first order linear equation, with a characteristic time 𝑅𝐶.

(e) If the flow rate at the exit of the left heart is given by𝑄(𝑡) = 𝑄0(1+sin(𝜔𝑡)), use the
Windkessel model to determine the flow rate 𝑄𝑅 (𝑡), and sketch it alongside 𝑄(𝑡). How
would your sketch change if the constant 𝑘 introduced in part (b) was increased? [25%]

Answer: There are different ways to solve this differential equation. The simplest probably involves working
with complex numbers. Take the input as 𝑄(𝑡) = 𝑄0 (1 + exp(𝑖𝜔𝑡)), and look for solutions in the form
𝑄𝑅 (𝑡) = 𝑎 + 𝑏 exp(𝑖𝜔𝑡). (Note that we are not interested in the transient response here, which would add a
decaying exponential to the solution)
Inserting the expression for 𝑄𝑅 in the differential equation, we get:

(𝑅𝐶𝑖𝜔 + 1)𝑏 exp(𝑖𝜔𝑡) + 𝑎 = 𝑄0 (1 + exp(𝑖𝜔𝑡))

This leads to 𝑎 = 𝑄0 and 𝑏 = 𝑄0/(1 + 𝑖𝑅𝐶𝜔)
We see that the solution is similar to the input indeed, but the oscillating component has a decreased
amplitude and a phase difference. This is what we expect since the compliance of the arteries is what
causing the decrease of pressure (and flow rate) fluctuations.
The parameter 𝑘 is inversely proportional to the compliance of the vessel. If 𝑘 increases, the phase
difference and drop in amplitude of the fluctuating component both decrease. It may then stop filtering out
the pressure/flow rate fluctuations associated with the heart beat.
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If k is increased significantly, the output gets closer to the original input.

END OF PAPER
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