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1 Researchers have collected data about the activity of an enzyme E with and without
introducing an inhibitor, and would like to identify the mechanism of action of this
inhibitor in the creation of a product P. They consider in particular these two mechanisms:
competitive inhibition and uncompetitive inhibition.

(a) Competitive inhibition.

S + E
𝑘1−⇀↽−
𝑘−1

C1
𝑘2−→ P + E

E + I
𝑘3−⇀↽−
𝑘−3

C2

Find an expression for the rate of product formation as a function of the substrate
concentration [S], the inhibitor concentration [I] and total enzyme concentration E0. [35%]

Answer:

The conservation of the number of enzyme molecules implies that [E] + [C1] + [C2] = 𝐸0. The quasi
steady state assumption says that the concentrations of the two complexes do not change, which yields two
equations:

𝑘1 [S] [E] = (𝑘2 + 𝑘−1) [C1]
𝑘3 [I] [E] = 𝑘−3 [C2]

We define new combinations of the rate constants:

[S] [E]
[C1]

=
(𝑘2 + 𝑘−1)

𝑘1
≡ 𝐾𝑀

[I] [E]
[C2]

=
𝑘−3
𝑘3

≡ 𝐾𝐼

Using the conservation equation, we get

[S] (𝐸0 − [C1] − [C2]) = 𝐾𝑀 [C1]
[I] (𝐸0 − [C1] − [C2]) = 𝐾𝐼 [C2]

Rearranging gives the following equation for the C1

[S] (𝐸0 − [C1] −
[I] (𝐸0 − [C1])
𝐾𝐼 + [I] ) = 𝐾𝑀 [C1]

yielding the expressions:
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[C1] =
[S]𝐸0𝐾𝐼

[S]𝐾𝐼 + [I]𝐾𝑀 + 𝐾𝐼𝐾𝑀

[C2] =
[I]𝐸0𝐾𝑀

[S]𝐾𝐼 + [I]𝐾𝑀 + 𝐾𝐼𝐾𝑀

Thus the overall rate of the reaction is

𝑉 = 𝑘2 [C1] =
𝑘2 [S]𝐸0

[S] + 𝐾𝑀 (1 + [I]/𝐾𝐼 )

𝑉 =
𝑉max [S]
[S] + 𝐾 ′

𝑀

with 𝐾 ′
𝑀 = 𝐾𝑀 (1 + [I]/𝐾𝐼 )

(b) Uncompetitive inhibition.

S + E
𝑘1−⇀↽−
𝑘−1

C1
𝑘2−→ P + E

C1 + I
𝑘3−⇀↽−
𝑘−3

C2

Find an expression for the rate of product formation as a function of the substrate
concentration [S], the inhibitor concentration [I] and total enzyme concentration E0. [35%]

Answer:
In the case of uncompetitive inhibition, the inhibitor sequesters a fraction of the substrate-enzyme complex
𝐶1 and prevent it to form the product.
We use the following notations: 𝑒=[E], 𝑖=[I], 𝑠=[S], 𝑐1=[C1], 𝑐2=[C2].
The rate is 𝑉 = 𝑘2𝑐1. We therefore need to have an expression of 𝑐1 as a function of 𝑠 and the total enzyme
concentration 𝐸0.
From the steady state assumption, we get:

𝑑𝑐1
𝑑𝑡

= 0 = 𝑘1𝑠𝑒 − 𝑘−1𝑐1 − 𝑘3𝑐1𝑖 + 𝑘−3𝑐2 − 𝑘2𝑐1

𝑑𝑐2
𝑑𝑡

= 0 = 𝑘3𝑐1𝑖 − 𝑘−3𝑐2

The second equation leads to 𝑐2 = 𝑐1𝑖/𝐾𝐼 , with 𝐾𝐼 = 𝑘−3/𝑘3. We can also obtain a relationship between 𝑒
and 𝑐1 using the first and second equations:

𝑘1𝑠𝑒 = 𝑘−1𝑐1 + 𝑘3𝑐1𝑖 − 𝑘−3𝑐2 + 𝑘2𝑐1 = (𝑘−1 + 𝑘3𝑖 − 𝑘−3𝑖/𝐾𝐼 + 𝑘2)𝑐1 = (𝑘−1 + 𝑘2)𝑐1

Hence:
𝑒 = 𝑐1𝐾𝑀/𝑠

Since the total enzyme concentration is 𝐸0 = 𝑒 + 𝑐1 + 𝑐2, we get:

𝐸0 = (𝐾𝑀/𝑠 + 1 + 𝑖/𝐾𝐼 )𝑐1
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The expression of the rate of product creation 𝑉 therefore becomes:

𝑉 =
𝑘2𝐸0 [S]

[S] (1 + [I]/𝐾𝐼 ) + 𝐾𝑀

𝑉 =
𝑉 ′

max [S]
[S] + 𝐾 ′

𝑀

with 𝐾 ′
𝑀 =

𝐾𝑀

1 + [I]/𝐾𝐼

and 𝑉 ′
max =

𝑉max
1 + [I]/𝐾𝐼

(c) Using the data below, identify a likely mechanism for the inhibition process. Justify
your answer. [30%]

Substrate concentration
(mmol/L)

Rate of product formation
without inhibitor
(mmol/L/min)

Rate of product formation
with inhibitor
(mmol/L/min)

0.710 0.200 0.180
0.400 0.180 0.150
0.310 0.160 0.110
0.098 0.120 0.070
0.066 0.100 0.050
0.040 0.070 0.040

Answer: On a qualitative level, it seems that the concentration of S increases, the rates converge to the same
value. This is consistent with a competitive inhibition, which does not change Vmax.
More precisely, for both processes, we would expect the data with and without inhibitor to fall on a line
when plotting 1/V as a function of 1/[S].

1
𝑉

=
1

𝑉max
+ 𝐾M
𝑉max

1
[S]

This is indeed the case on a plot.

It is then apparent that the two curves have similar intercept with the y-axis but different slopes. This means

that the inhibitor does not change 𝑉𝑚𝑎𝑥 but changes the ratio 𝐾𝑀/𝑉𝑚𝑎𝑥 . This is consistent with competitive

inhibition and goes against an uncompetitive mechanism which would imply a change of 𝑉𝑚𝑎𝑥 but contant

𝐾𝑀/𝑉𝑚𝑎𝑥 .
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2 This question is about ion flux at the Nernst potential.

(a) Give the formula for the Nernst–Planck equation, describing the flux of an ion along
an ion channel, and explain the meaning of each symbol in it. [10%]

Answer:

𝐽 (𝑥, 𝑡) = −𝐷
(
𝜕

𝜕𝑥
𝑐(𝑥, 𝑡) + 𝑧𝐹

𝑅𝑇
𝑐(𝑥, 𝑡) 𝜕

𝜕𝑥
𝜙(𝑥, 𝑡)

)
(1)

where 𝑥 is one dimensional space (along the length of a channel), 𝑡 is time, 𝐽 is the flux of the ion, 𝑐 is its

concentration, 𝐷 is its diffusion coefficient, 𝑧 is its valence, 𝑇 is temperature, 𝐹 is the Faraday constant, and

𝑅 is the universal gas constant.

(b) Give the formula for the Nernst potential of an ion, and explain the meaning of each
symbol in it. [5%]

Answer:

𝑉 =
𝑅𝑇

𝑧𝐹
ln
𝑐e
𝑐i

(2)

where 𝑉 is membrane potential (electric potential difference between the two ends of the channel), 𝑐e and

𝑐i are the concentrations of the ion at the extra- and intracellular ends of the channel, respectively, 𝑧 is the

valence of the ion, 𝑇 is temperature, 𝐹 is the Faraday constant, and 𝑅 is the universal gas constant.

(c) Prove that whenever the membrane potential is equal to the Nernst potential, the
following equation holds: [25%]

∫ 𝐿

0

𝐽 (𝑥, 𝑡)
𝑐(𝑥, 𝑡) 𝑑𝑥 = 0

where 𝑥 is the position along the channel, 𝑡 is time, 𝐽 is the flux of the ion, 𝑐 is its
concentration, and 𝐿 is the length of the channel.
Answer:

𝑉 (𝑡) =
𝑅𝑇

𝑧𝐹
ln
𝑐e (𝑡)
𝑐i (𝑡)

𝜙(𝐿, 𝑡) − 𝜙(0, 𝑡) = −𝑅𝑇
𝑧𝐹

(ln 𝑐(𝐿, 𝑡) − ln 𝑐(0, 𝑡))∫ 𝐿

0

𝜕

𝜕𝑥
𝜙(𝑥, 𝑡) 𝑑𝑥 = −

∫ 𝐿

0

𝑅𝑇

𝑧𝐹

𝜕

𝜕𝑥
ln 𝑐(𝑥, 𝑡) 𝑑𝑥∫ 𝐿

0

(
𝜕

𝜕𝑥
𝜙(𝑥, 𝑡) + 𝑅𝑇

𝑧𝐹

𝜕
𝜕𝑥
𝑐(𝑥, 𝑡)
𝑐(𝑥, 𝑡)

)
𝑑𝑥 = 0∫ 𝐿

0

𝜕
𝜕𝑥
𝑐(𝑥, 𝑡) + 𝑧𝐹

𝑅𝑇
𝑐(𝑥, 𝑡) 𝜕

𝜕𝑥
𝜙(𝑥, 𝑡)

𝑐(𝑥, 𝑡) 𝑑𝑥 = 0∫ 𝐿

0

𝐽 (𝑥, 𝑡)
𝑐(𝑥, 𝑡) 𝑑𝑥 = 0 (3)
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(d) Based on the equation in part (c), explain with reasons if the membrane potential
being equal to the Nernst potential of the ion implies that the flux of the ion is zero
everywhere inside the channel. [10%]

Answer: No, it doesn’t imply that, because 𝐽 (𝑥, 𝑡) could be negative at some 𝑥 and positive at some other 𝑥,

so that they cancel out in the integral.

(e) Answer if each of the following statements is always true for the steady state of an
ion channel. (You can assume that the channel is only permeable to a single ion.) [20%]

(i) No individual ions move along the channel;
Answer: Not always true.

(ii) There is no net movement of ions along the channel;
Answer: Not always true.

(iii) The flux of the ion is constant as a function of space along the channel;
Answer: Always true.

(iv) The flux of the ion is zero everywhere along the channel.
Answer: Not always true.

(f) The equation in part (c) holds at any time (when the condition from which it was
derived holds). What is its form when the channel is in steady state? Describe the meaning
of any symbols that are different from those in the equation in part (c) and explain how
they depend on time and space. [20%]

Answer: ∫ 𝐿

0

𝐽★

𝑐∗ (𝑥) 𝑑𝑥 = 0 (4)

𝐽★ is steady-state flux, which is neither a function of time, because the channel is in steady-state, nor a

function of space, because at steady-state the flux is constant (though not necessarily zero). 𝑐∗ (𝑥) is steady-

state concentration, which is not a function of time, because the channel is in steady-state, but it can be a

function of space, because at steady-state the concentration may not be constant (let alone zero).

(g) Prove that whenever the membrane potential is equal to the Nernst potential, and the
channel is in steady state, the flux of the ion is zero everywhere inside the channel. [10%]

Answer: In this case, Equation 4 holds. Because 𝐽★ does not depend on 𝑥, we can rewrite equation 4 as

𝐽★
∫ 𝐿

0

1
𝑐∗ (𝑥) 𝑑𝑥 = 0 (5)

𝐽★ = 0 (6)
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3 Consider a Bingham fluid flowing in a cylindrical rigid vessel of radius 𝑅 and length
𝐿, in steady state. A Bingham fluid has a rheology defined by the following constitutive
equation:

𝜏 = 𝜏𝑦 + 𝜂 ¤𝛾

where 𝜏 is the shear stress, ¤𝛾 is the shear rate, and 𝜏𝑦 and 𝜂 are constants. The following
equations characterise force balance at the steady state in a cylindrical vessel in polar
coordinates, where 𝑥 is the coordinate along the flow direction, and 𝑝(𝑥, 𝑟) is the pressure
field in the fluid.

𝜕𝑝

𝜕𝑥
=

1
𝑟

𝜕 (𝑟𝜏)
𝜕𝑟

𝜕𝑝

𝜕𝑟
= 0

(a) What is the minimum pressure dropΔ𝑃𝑐 across the vessel required to have a non-zero
flow rate through the vessel? [25%]

Answer: The second force balance equation indicates that the pressure does not depend on 𝑟. So we can
use the separation of variable to solve the first one, indicating that dp/dx is constant (and negative here, as
pressure drops). We can then integrate the first equation to find 𝜏(𝑟).

𝜕 (𝑟𝜏)
𝜕𝑟

=
𝜕𝑝

𝜕𝑥
𝑟

𝑟𝜏 =
1
2
𝜕𝑝

𝜕𝑥
𝑟2 + 𝐶

𝜏 =
1
2
𝜕𝑝

𝜕𝑥
𝑟 + 𝐶

𝑟

Now the stress must be finite at 𝑟 = 0, so C must be zero.

𝜏 =
1
2
𝜕𝑝

𝜕𝑥
𝑟

Note that here 𝜏 must be negative too. A flow will develop as soon as the stress at its largest point, i.e. at
the boundary, has a magnitude larger than the yield stress 𝜏𝑦 . We assume here that Δ𝑃 is defined as positive
(magnitude of the pressure drop), we have 𝜕𝑝

𝜕𝑥
= −Δ𝑃

𝐿
(other sign conventionsare fine as long as they are

consistent). If there is a flow, we therefore have:

1
2
Δ𝑃

𝐿
𝑅 > 𝜏𝑦

Δ𝑃

𝐿
>

2𝜏𝑦
𝑅

Hence:
Δ𝑃𝑐 =

2𝐿𝜏𝑦
𝑅
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(b) Find a mathematical expression of the flow profile in the case where the material is
flowing, as a function of the pressure drop Δ𝑃 and other parameters defined above. [50%]

Answer: Considering that the flow is directing towards positive 𝑥, the velocity profile 𝑢(𝑟) is positive and
maximum at the centre and decreases with 𝑟 . 𝑑𝑢/𝑑𝑟 and the shear stress are therefore negative, and the
constitutive equation writes here:

𝜏 = −𝜏𝑦 + 𝜂
𝜕𝑢

𝜕𝑟

This expression can then be introduced in the equation for 𝜏(𝑟) obtained in the previous section and solve
for 𝑢(𝑟)

𝜕𝑢

𝜕𝑟
=

1
2𝜂
𝜕𝑝

𝜕𝑥
𝑟 +

𝜏𝑦

𝜂

𝑢 =
1
4𝜂
𝜕𝑝

𝜕𝑥
𝑟2 +

𝜏𝑦

𝜂
𝑟 + 𝐷

𝐷 is determined using the no-slip boundary condition: 𝑢(𝑅) = 0.

𝐷 = − 1
4𝜂
𝜕𝑝

𝜕𝑥
𝑅2 −

𝜏𝑦

𝜂
𝑅

(c) Sketch the flow profiles for the following conditions: Δ𝑃 = Δ𝑃𝑐/2, Δ𝑃 = 2Δ𝑃𝑐,
Δ𝑃 ≫ Δ𝑃𝑐. [25%]

Answer: For Δ𝑃 = Δ𝑃𝑐/2, there is no flow; 𝑢(𝑟) = 0. For Δ𝑃 = 2Δ𝑃𝑐, the flow profile is flat (plug-like)

between 𝑟 = 0 and 𝑅/2, and parabolic between 𝑅/2 and 𝑅. For Δ𝑃 ≫ Δ𝑃𝑐, the plug region is negligible

and the flow is approximately parabolic.
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4 (a) The Krogh cylinder model allows us to estimate the oxygen concentration 𝑐 in
tissues as a function of the distance to the closest capillary. Explain the interpretation of
the Krogh cylinder radius 𝑅0 in this model. [10%]

Answer: The Krogh cylinder radius represents half of the typical distance between two blood capillaries.

In the Krogh model, space is segmented to allocate each point in the tissue to its closest capillary, defining

domains that have approximately the shape of cylinders.

(b) Using appropriate assumptions, show that the concentration profile takes the
following form:

𝑐(𝑟)
𝑐𝑐

= 1 +Φ

(
𝑟2

𝑅2
0
− 𝑅∗2 − 2 ln

(
𝑟

𝑅0𝑅∗

))
where 𝑟 is the distance to the centre of the closest capillary, 𝑐𝑐 is the oxygen concentration
in the capillary, and Φ and 𝑅∗ are constants. Find expressions for Φ and 𝑅∗ as a function
of the radius 𝑅0 of the Krogh cylinder, the radius 𝑅𝑐 of the capillary, the concentration
𝑐𝑐 of oxygen in the capillary, the rate of oxygen consumption per unit time 𝜌 and the
coefficient of diffusion 𝐷 of the oxygen in the tissue. [50%]

Answer: In the steady state and cylindrical geometry:

𝐷

𝑟

𝑑

𝑑𝑟

(
𝑟
𝑑𝑐

𝑑𝑟

)
= 𝜌

The general solution is:

𝑐(𝑟) = 𝜌

4𝐷
𝑟2 + 𝐴 ln(𝑟) + 𝐵

with the following boundary conditions:

𝑐(𝑅𝑐) = 𝑐𝑐 and
𝑑𝑐

𝑑𝑟
(𝑅0) = 0

We obtain:

𝑐(𝑟)
𝑐𝑐

= 1 +
𝜌𝑅2

0
4𝑐𝑐𝐷

(
𝑟2

𝑅2
0
− 𝑅2

𝑐

𝑅2
0
− 2 ln (𝑟/𝑅𝑐)

)
We denote Φ =

𝜌𝑅2
0

4𝑐𝑐𝐷 (dimensionless reaction rate). We define as well the dimensionless geometrical
parameter: 𝑅∗ = 𝑅𝑐/𝑅0:

𝑐(𝑟)
𝑐𝑐

= 1 +Φ

(
𝑟2

𝑅2
0
− 𝑅∗2 − 2 ln

(
𝑟

𝑅0𝑅∗

))
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(c) Figure 1 shows the line defined by:

Φ

(
𝑅∗2 − 2 ln

(
𝑅∗

)
− 1

)
= 1

Explain the significance of this line and show how it is derived mathematically. [20%]

B

A

Fig. 1

Answer: This line corresponds to the condition 𝑐(𝑟 = 𝑅0) = 0, i.e. the situation where there is just enough

oxygen to supply the whole volume of the cylinder.

(d) Sketch the oxygen concentration profiles for two tissues whose oxygenation states
are in domain A and domain B respectively. [20%]

Answer: In case A, the consumption is low enough to have a concentration always above zero. It starts at 𝑐𝑐
at the radius of the capillary, and ends with a zero gradient at 𝑟 = 𝑅0.

In case B, there is not enough oxygen, and the concentration reaches zero before 𝑟 = 𝑅0, and a concentration

equal to zero beyond this point, indicating a region where the tissue would die.

END OF PAPER
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Comments from examiners
Q1: This was a very popular question. It was a straight forward application of what
students had covered in the course, and students did overall very well indeed. When
comparing models to data, it is important to discuss both model. Show that one of them
works doesn’t mean that the other one doesn’t, and vice-versa.
Q2: This was a moderately popular question, with some excellent solutions, and a couple
of poor attempts. Some responses were outright dimensionally inconsistent (in a or b).
Typical errors included misunderstanding the somewhat paradoxical nature of steady-state
in an ion channel (e/ii), where concentrations do not change over time, and yet there may
be constant uniform flux across the channel (because concentrations are assumed to be
maintained at the two ends “externally”), and not recognising that at steady state the flux
is not only time-independent (i.e. constant), but also space-independent (i.e. uniform).
Q3: Bingham fluid. This was a very popular question, but a number of students struggled
with it nonetheless. Although a similar question (with a different constitutive equation)
is part of the examples paper, some students had issues understanding how the presence
of a yield stress affects the flow profiles. One of the most common issues concerned the
consistency of the signs of the shear stress and pressure drop or gradient.
Q4: Krogh model. The question was fairly popular, and generally well answered. Many
students could write and solve the reaction diffusion equation properly in cylindrical
coordinates, and use the right boundary conditions. The graph was also well understood
and well interpreted.
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