EGT2
ENGINEERING TRIPOS PART IIA

Friday 28 April $2017 \quad 9.30$ to 11

Module 3G2

MATHEMATICAL PHYSIOLOGY

Answer not more than three questions.
All questions carry the same number of marks.
The approximate percentage of marks allocated to each part of a question is indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS

Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM

CUED approved calculator allowed
Supplementary pages: Three copies of Figure 1 (Question 1)
Engineering Data Book

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent pages of this question paper until instructed to do so.

Version AK/2

1 (a) Consider the following model for oxygen binding to haemoglobin:

$$
4 \mathrm{O}_{2}+\mathrm{Hb} \underset{k_{-}}{\stackrel{k_{+}}{\rightleftharpoons}} \mathrm{Hb}\left(\mathrm{O}_{2}\right)_{4}
$$

Find an analytical expression for the haemoglobin saturation curve. Sketch its graph as a function of the concentration of oxygen. What are the limitations of this model?

Answer: At the equilibrium, we have the following relationship:

$$
K=\frac{k_{+}}{k_{-}}=\frac{\left[\mathrm{Hb}\left(\mathrm{O}_{2}\right)_{4}\right]}{\left[\mathrm{O}_{2}\right]^{4}[\mathrm{Hb}]} \Longrightarrow\left[\mathrm{Hb}\left(\mathrm{O}_{2}\right)_{4}\right]=K\left[\mathrm{O}_{2}\right]^{4}[\mathrm{Hb}]
$$

The saturation curve is defined by:

$$
Y\left(\left[\mathrm{O}_{2}\right]\right)=\frac{\left[\mathrm{Hb}\left(\mathrm{O}_{2}\right)_{4}\right]}{\left[\mathrm{Hb}\left(\mathrm{O}_{2}\right)_{4}\right]+[\mathrm{Hb}]}=\frac{K\left[\mathrm{O}_{2}\right]^{4}[\mathrm{Hb}]}{K\left[\mathrm{O}_{2}\right]^{4}[\mathrm{Hb}]+[\mathrm{Hb}]}=\frac{\left[\mathrm{O}_{2}\right]^{4}}{\left[\mathrm{O}_{2}\right]^{4}+K^{-1}}
$$

The curve should show the " S " shape of the curve, with a slope 0 at low oxygen concentration as $Y\left(\left[\mathrm{O}_{2}\right]\right) \propto\left[\mathrm{O}_{2}\right]^{4}$ in this regime. The asymptote should be $Y=1$ for large oxygen concentrations, and ideally indicate that the curve intercepts 0.5 when $\left[\mathrm{O}_{2}\right]=K^{-1 / 4}$.

The model assumes that all four oxygen molecules bind haemoglobin at the same time, which is not correct, but qualitatively the s-shape curve that is observed experimentally. It might be a suitable approximation to study the effect of other parameters on the saturation curves. Accounting for cooperativity effects is however required to get a close match with the data.
(b) We now consider the role of 2,3-bisphosphoglycerate (BPG), a small molecule that is a by-product of the metabolic activity of the cells, on the binding of oxygen to

Version AK/2

haemoglobin. Figure 1 shows the saturation curves of haemoglobin under normal and elevated BPG levels. Typical values of the oxygen partial pressure in veins and arteries are indicated on the graph. Additional copies of figure 1 are attached to the exam paper. Students may use them to support their answers to the following questions.
(i) Determine if BPG is an activator or inhibitor of oxygen binding. Using the model introduced in part (a), provide an estimate of $\frac{k_{+}}{k_{-}}$for normal and elevated levels of BPG. The solubility of oxygen in blood at body temperature is:
$\sigma=1.36 \cdot 10^{-6}$ Molar / mmHg.
Answer: For a given partial pressure of oxygen, less is bound to haemoglogin under elevated levels of BPG. It is therefore an inhibitor of oxygen binding.
Using the model of part (a), we have $Y\left(\left[\mathrm{O}_{2}\right]=0.5\right.$ when $K=\frac{k_{+}}{k_{-}}=\left[\mathrm{O}_{2}\right]^{-4}=\left(\sigma P\left(\mathrm{O}_{2}\right)\right)^{-4}$
For normal levels of BPG, we have $Y\left(\left[\mathrm{O}_{2}\right]=0.5\right.$ for $P\left(\mathrm{O}_{2}\right) \approx 25 \mathrm{mmHg}$, i.e. $\left[\mathrm{O}_{2}\right] \approx 3.5 \cdot 10^{-5}$ Molar. Hence $K \approx 6 \pm 1 \cdot 10^{17}$.
For elevated levels of BPG, we have $Y\left(\left[\mathrm{O}_{2}\right]=0.5\right.$ for $P\left(\mathrm{O}_{2}\right) \approx 30-35 \mathrm{mmHg}$. We can take $\left[\mathrm{O}_{2}\right] \approx 4.5 \cdot 10^{-5} \mathrm{Molar}$ as an approximate value. Hence $K \approx 2.5 \pm 1 \cdot 10^{17}$.
(ii) During intense exercise, BPG is naturally produced by the tissues. How would this affect the release of oxygen in the tissues?

Answer: The figure below shows how much oxygen is released to the tissues under normal and elevated levels of BPG. Elevated BPG levels increase the release from 50% to $65-70 \%$, which is beneficial in case of intense exercise.

Veins Arteries Arteries

(iii) People who live at high altitude, where the partial pressure of oxygen is reduced, tend to produce higher levels of BPG. Explain how this contributes to the proper oxygenation of the tissues.

Answer: The figure below shows that at normal BPG level the amount of oxygen captured in altitude is diminished by about 10%. Higher BPG levels allow the body to recover the 50% obtained at normal altitude and BPG levels.

Version AK/2

(iv) Pregnant women tend to have higher levels of BPG while foetal haemoglobin has a limited response to BPG. Is this beneficial for the developing foetus and/or the mother? Explain your answer.

Answer: In the placenta, oxygen needs to be transferred from the mother's haemoglobin to the foetus' haemoglobin. Elevated BPG levels improve this transfer by about 20\%, which is beneficial for the foetus. This is also beneficial for the mother at it improves oxygen release in other tissues. Overall, elevated BPG levels increase the oxygen capacity to compensate for the increased demand in the mother's body.

Fig. 1

Version AK/2

2 A cylindrical vessel of radius R and length L is subjected to a constant pressure difference ΔP between entrance and exit points $(\Delta P>0)$. The position along the vessel is x, increasing in the direction of the flow. The radial distance is $r . p(r, x)$ is the blood hydrostatic pressure. $u(r)$ is the blood velocity. $\tau(r)$ is the blood shear stress.

Force balance on a fluid element provides the following equations:

$$
\begin{gathered}
-\frac{\partial p}{\partial x}+\frac{1}{r} \frac{\partial(r \tau)}{\partial r}=0 \\
\text { and } \quad \frac{\partial p}{\partial r}=0
\end{gathered}
$$

(a) We consider a non-Newtonian fluid that has a yield stress τ_{y}.
(i) Express the shear stress $\tau(r)$ as a function of $\Delta P, L$ and r.

Answer: $\frac{\partial p}{\partial r}=0$ implies that p is a function of x only. The first equation can therefore be solved by separation of variables:

$$
\frac{\partial p}{\partial x}=\frac{1}{r} \frac{\partial(r \tau)}{\partial r}
$$

where $\frac{\partial p}{\partial x}$ is a constant, $\frac{\partial p}{\partial x}=-\frac{\Delta P}{L}$, taking as requested $\Delta P>0$, i.e. pressure at the start - pressure at the end.

$$
\begin{gathered}
\frac{\partial(r \tau)}{\partial r}=-r \frac{\Delta P}{L} \\
r \tau=-\frac{1}{2} r^{2} \frac{\Delta P}{L}+C \\
\tau=-\frac{1}{2} r \frac{\Delta P}{L}+\frac{C}{r}
\end{gathered}
$$

Because the shear stress must be finite at the centre of the vessel, we have $C=0$.

$$
\tau=-\frac{1}{2} r \frac{\Delta P}{L}
$$

(ii) Find an expression for the pressure difference ΔP_{c} required to start a flow in the vessel.

Answer: Flow starts when the shear stress reaches the yield shear stress somewhere in the vessel. Due to the form of the shear stress profile, this would happen here on the boundary.

$$
\begin{gathered}
|\tau(R)|=\tau_{y} \Longrightarrow \frac{1}{2} R \frac{\Delta P_{c}}{L}=\tau_{y} \\
\Delta P_{c}=\frac{2 \tau_{y} L}{R}
\end{gathered}
$$

(b) Figure 2 shows the rheological data for blood in physiological conditions, where $\dot{\gamma}$ represents the shear rate. Establish a phenomenological relationship between the shear

Version AK/2

stress and the shear rate that is consistent with these data. Explain the physical meaning of any constant introduced in the relationship and provide their approximative values.

Answer: $\sqrt{\tau}$ is an affine function of $\sqrt{\gamma}$. Since both quantities are defined in the positive domain, we have:

$$
\sqrt{\tau}=A+B \sqrt{\dot{\gamma}}
$$

If $\sqrt{\tau}<A$, no flow can occur, therefore A^{2} is essentially the yield stress τ_{y} of the fluid.
When $\dot{\gamma}$ is very large, we have $\sqrt{\tau} \approx B \sqrt{\gamma}$. Hence, B^{2} acts as the effective viscosity μ of the material at large shear rate.
In summary, we could write the relationship as:

$$
\sqrt{|\tau|}=\sqrt{\tau_{y}}+\sqrt{\mu} \sqrt{|\dot{\gamma}|}
$$

We read on the graph that $A \approx 2 \mathrm{mPa}^{0.5}$. Hence $\tau_{y} \approx 4 \mathrm{mPa}$.
Likewise, $B \approx\left(33 \pm 2 / 20(\mathrm{mPa} \mathrm{s})^{0.5}\right.$. Hence $\eta \approx 2.7 \pm 0.3 \mathrm{mPas}$.
(c) Show that the velocity profile $u(r)$ satisfies the following differential equation in any region where $\frac{d u}{d r} \neq 0$:

$$
\frac{d u}{d r}=K\left(r-2 \sqrt{R_{C} r}+R_{c}\right)
$$

Find the expressions of K and R_{C} in the above equation. What happens if $R_{C}>R$?

Answer:
We start from the constitutive equation of the fluid, valid in the case where $\tau>\tau_{y}$:

$$
\sqrt{|\tau|}=\sqrt{\tau_{y}}+\sqrt{\mu} \sqrt{|\dot{\gamma}|}
$$

and the expression of the shear stress:

$$
\tau=-\frac{1}{2} r \frac{\Delta P}{L}
$$

Since τ and $\dot{\gamma}=\frac{d u}{d r}$ negative here, we have

$$
\sqrt{-\tau}=\sqrt{\tau_{y}}+\sqrt{\mu} \sqrt{-\frac{d u}{d r}}
$$

which can also be rearranged to isolate the term we care about, $\frac{d u}{d r}$.

$$
\sqrt{\mu} \sqrt{-\frac{d u}{d r}}=\sqrt{-\tau}-\sqrt{\tau_{y}}
$$

We can then square the whole expression:

$$
-\mu \frac{d u}{d r}=-\tau+\tau_{y}-2 \sqrt{-\tau \tau_{y}}
$$

Version AK/2

$$
\mu \frac{d u}{d r}=-\frac{1}{2} r \frac{\Delta P}{L}-\tau_{y}+2 \sqrt{\frac{1}{2} r \frac{\Delta P}{L} \tau_{y}}
$$

By analogy with the expression to obtain, we see that K must be equal to:

$$
K=-\frac{1}{2 \mu} \frac{\Delta P}{L}
$$

Factorising K in the expression for $\frac{d u}{d r}$, we get:

$$
\frac{d u}{d r}=K\left(r+\frac{-\tau_{y}}{-\frac{\Delta P}{2 L}}+2 \sqrt{r} \frac{\sqrt{\frac{1}{2} \frac{\Delta P}{L} \tau_{y}}}{-\frac{\Delta P}{2 L}}\right)
$$

This allows us to find $R_{c}=\frac{2 \tau_{y} L}{\Delta P}$
If $R_{c}>R$, then the shear stress at the wall is less than the yield stress and no flow occurs.
(d) Sketch the flow profiles for the following cases:

- $\Delta P<\Delta P_{c}$,
- $\Delta P=2 \Delta P_{c}$,
- $\Delta P \gg \Delta P_{c}$.

Answer:

$\Delta P<\Delta P_{s}$

Version AK/2

Fig. 2

Version AK/2

3 Figure 3 represents a single alveolus and a blood capillary in contact with it. Numerical values relevant to the question are given above the figure.
(a) What is the concentration c_{b}^{0} of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ in the blood arriving in the lungs? What is the concentration c_{g} of CO_{2} in the blood after it equilibrates with the CO_{2} partial pressure in the alveolus P_{g} ?

Answer: We just need to use the solubility σ to relate these quantities: $c_{b}^{0}=\sigma P_{i}=1.5 \mathrm{mM}$ and $c_{g}=\sigma P_{g}=$ $1.3 m M$.
(b) In blood, pH is roughly constant and equal to 7.4. Consider the equilibrium between CO_{2} and the bicarbonate ion HCO_{3}^{-}:

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \stackrel{k_{+}}{\underset{k_{-}}{\rightleftharpoons}} \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}
$$

Show that the concentration c_{d} of bicarbonate is proportional to the concentration c_{b} of CO_{2}. Find the expression of $K=c_{d} / c_{b}$ as a function of the constants k_{+}, k_{-}and $\left[\mathrm{H}^{+}\right]$.

Answer: At the equilibrium, we have:

$$
\frac{k_{+}}{k_{-}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{CO}_{2}\right]}
$$

Hence: $K=\frac{k_{+}}{\left[\mathrm{H}^{+}\right] k_{-}}$
(c) Find an expression for the flux per unit area of CO_{2} through the alveolar epithelium as a function of the concentration of CO_{2} in the blood $\left(c_{b}\right)$, the partial pressure in the alveolus $\left(P_{g}\right)$, the thickness of the epithelium $\left(d_{e}\right)$, the solubility of $\mathrm{CO}_{2}(\sigma)$, and the diffusion constant of CO_{2} in the epithelium $\left(D_{e}\right)$.

Answer: We consider first the flux through the layer is (Fick's law):

$$
\phi=\frac{D_{e}}{d_{e}}\left(c_{g}-c_{b}\right)
$$

where c_{g} is the concentration of CO_{2} at the interface between the alveolus epithelium and the gas. The concentration at the interface is at equilibrium with the gas, so $c_{g}=\sigma P_{g}$

$$
\phi=\frac{D_{e}}{d_{e}}\left(\sigma P_{g}-c_{b}\right)
$$

Version AK/2

(d) The distance along the capillary is x, taking as the origin the location where the capillary comes in contact with the alveolar epithelium (see figure 3). The capillary cross-sectional area is uniform and can be approximated by d_{a}^{2}. The arc length of the capillary cross-section that is in contact with the epithelium is about d_{a}. Show that the concentration of CO_{2} along the capillary satisfies the following differential equation:

$$
v(1+K) \frac{d c_{b}}{d x}=\frac{D_{e}}{d_{a} d_{e}}\left(\sigma P_{g}-c_{b}\right)
$$

Answer:

This question may in answered in different ways, either (i) following a lump of blood over time, finding $c_{b}(t)$, and then expressing it as a function of x, or (ii) using CO_{2} conservation for a small length $d x$, accounting for all possible forms of CO_{2} dissolved. We present here the former.

Following a lump of blood moving along the capillary, we have:

$$
\begin{gathered}
\frac{d c_{b}}{d t}=\frac{D_{e}}{d_{d} d_{e}}\left(\sigma P_{g}-c_{b}\right)+k_{-} h c_{d}-k_{+} c_{b} \\
\frac{d c_{d}}{d t}=k_{+} c_{b}-k_{-} h c_{d} \\
\frac{d}{d t}\left(c_{b}+c_{d}\right)=\frac{D_{e}}{d_{a} d_{e}}\left(\sigma P_{g}-c_{b}\right) \\
(1+K) \frac{d c_{b}}{d t}=\frac{D_{e}}{d_{a} d_{e}}\left(\sigma P_{g}-c_{b}\right)
\end{gathered}
$$

Expressed now in the frame of the blood vessel $\left(\frac{d c_{b}}{d t}=v \frac{d c_{b}}{d x}\right)$:

$$
v(1+K) \frac{d c_{b}}{d x}=\frac{D_{e}}{d_{a} d_{e}}\left(\sigma P_{g}-c_{b}\right)
$$

(e) Sketch $c_{b}(x)$. Using the fact that at $37^{\circ} \mathrm{C}, k_{+} / k_{-}=8 \cdot 10^{-7} \mathrm{~mol} \mathrm{~L}^{-1}$ and $\mathrm{pH}=7.4$, determine if gas exchange is complete by the time blood leaves the alveolus.

Answer: The solution of the equation is a simple exponential, starting at c_{b}^{0} and reaching asymptotically c_{g} :

$$
c_{b}=c_{g}+\left(c_{b}^{0}-c_{g}\right) \exp (-x / \lambda)
$$

The decay length λ is:

$$
\lambda=\frac{d_{a} d_{e}}{D_{e}} v(1+K)
$$

Numerically, we get $\lambda \approx 125 \mu \mathrm{~m}$, which is slightly less than $2 \pi R_{a}$.

Version AK/2

The relevant parameters are:

Average alveolus radius	R_{a}	$50 \mu \mathrm{~m}$
Epithelium thickness	d_{e}	$1 \mu \mathrm{~m}$
Diffusion coefficient of CO_{2} in the epithelium	D_{e}	$2.5 \cdot 10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$
Partial pressure of CO_{2} in blood arriving in the lung	P_{i}	45 mmHg
Solubility of CO_{2}	σ	$3.3 \cdot 10^{-5} \mathrm{Molar} / \mathrm{mmHg}$
Partial pressure of CO_{2} in the alveolus	P_{g}	40 mmHg
Average blood speed in the capillary	v	$3 \mathrm{~mm} \mathrm{~s}^{-1}$
Capillary diameter	d_{a}	$5 \mu \mathrm{~m}$

Fig. 3

Version AK/2

4 (a) Consider a single-compartment model of a cell with capacitance C and three Ohmic transmembrane conductances, g_{1}, g_{2}, g_{3} with reversal potentials E_{1}, E_{2}, E_{3}. Derive expressions for the membrane time-constant and the resting membrane potential of the cell.

Answer: The membrane equation for a single compartment is:

$$
C \frac{d V}{d t}=\sum_{i} g_{i}\left(E_{i}-V\right)=-V \sum_{i} g_{i}+\sum_{i} g_{i} E_{i}
$$

Therefore

$$
\frac{C}{\sum_{i} g_{i}} \frac{d V}{d t}=-V+\frac{\sum_{i} g_{i} E_{i}}{\sum_{i} g_{i}}
$$

Thus the membrane time constant is $\frac{C}{\sum_{i} g_{i}}$. Setting $\frac{d V}{d t}=0$ gives the resting membrane potential:

$$
V_{\text {rest }}=\frac{\sum_{i} g_{i} E_{i}}{\sum_{i} g_{i}}
$$

(b) Cortical spreading depression (CSD) is a pathological condition in which sustained neuronal depolarization spreads across a large population of neurons in the brain. The mechanism is thought to involve accumulation of extracellular potassium, followed by subsequent release of additional potassium from neurons in nearby tissue.
(i) With reference to relevant terms in the Nernst Equation, explain why extracellular potassium accumulation would lead to neuronal depolarization.

Answer: The Nernst equation shows how the reversal potential of an ion species depends on its relative intracellular and extracellular concentrations:

$$
E_{i o n}=\frac{R T}{z F} \ln \left(\frac{c_{e}}{c_{i}}\right)
$$

where c_{e}, c_{i} are the extracellular and intracellular concentrations of the ion species and z is the valence. For $K^{+}, z=1$ and $c_{i} \gg c_{e}$, so $E_{K}<0$ (typically $E_{K} \approx-90 \mathrm{mV}$). An increase in c_{e} will depolarize E_{K}. Since the resting potential of a neuron is dominated by E_{K}, an increase in extracellular K^{+}will depolarise the resting potential.
(ii) Suggest why membrane depolarization might result in further release of potassium from neurons.

Answer: Much of the potassium conductance in a neuron is voltage-gated (depolarization-activated) and non-inactivating. Depolarization results in opening of potassium channels, leading to an outward potassium current, which, if sufficiently large and sustained will increase the extracellular potassium.

Version AK/2

(iii) CSD results in a transient loss of action potential activity in the affected region. What mechanism might explain this?

Answer: Action potentials depend on sodium currents which inactivate when subjected to continuous depolarization. Thus, CSD could cause widespread sodium channel inactivation and loss of spiking activity.
(c) (i) Retrograde action potentials travel in the opposite direction along axons to normal action potentials (i.e. toward the cell body). Explain what would happen if a normal action potential were to collide with a retrograde action potential.

Answer: Action potential propagation depends on sodium channels being in a de-inactivated state (i.e. system is not in absolute refractory period). As the action potential moves along an axon, it transiently inactivates sodium channels in its wake. Thus, if two action potentials were to collide, they would annihilate.
(ii) Figure 4 shows an action potential waveform and the accompanying sodium and potassium currents in the Hodgkin-Huxley squid giant axon model. Currents are plotted with the usual sign convention (negative $=$ inward). Explain the origin of the kink $\left({ }^{*}\right)$ in the sodium current waveform.

Answer: The upward phase of the kink is due to the fact that the membrane potential approaches the sodium reversal potential, leading to a decrease in driving force and a transient decrease in sodium current. The downward phase coincides with the repolarizing effect of the delayed (sloweractivating) potassium current (as can be seen in the action potential waveform), which evidently occurs before substantial sodium channel inactivation.

For parts (b) and (c) the following table may be useful.

Typical intracellular and extracellular ionic concentrations		
Ion	Intracellular concentration (mM)	Extracellular concentration (mM)
Na^{+}	10	150
$\mathrm{~K}^{+}$	145	5
Cl^{-}	4	110

Fig. 4

END OF PAPER

Page 15 of 16

Version AK/2

THIS PAGE IS BLANK

Page 16 of 16

Version AK/2

Comments on Questions

Q1 A very popular question, chosen by 27 of the 29 students taking exam.
The first part of the question was generally well answered. Students understand well the simple model of oxygen binding, can write the equilibrium and saturation curve. Nearly all students identified properly the inhibiting effect of BPG. Most students managed to get sensible values for the equilibrium constants, which is very encouraging. Overall, the basic concepts are well understood.

The three qualitative questions about the benefits of high levels of BPG were most often only partly addressed; conclusions were only rarely justified, making use of the data available. A large number of answers simply stated that higher levels of BPG help release oxygen in the tissues, for all three questions. This is correct, but misses the point. For instance, on question b (iii), answering properly the question involves comparing ball park figures for the oxygen transport at high altitude with normal and elevated levels on PBG with oxygen transport at normal altitude and normal BPG levels (as reference value for physiological needs).

Q2 A popular question, 23/29 students chose this question.
The question was overall well answered by those who took the time to tackle it. The most common issue was the handling of the signs for the shear stress and velocity gradient. Otherwise it was nice to see that most students understood properly the basic steps to extract and use rheological data to calculate a flow profile.

Q3 A popular question, selected by 23/29 students.
Many students provided excellent answers to this question. Parts a-c were well addressed and demonstrated basic understanding of equilibrium and diffusion. Part d was more challenging. There are several ways to address it, and reverse engineering the answer rarely provided a satisfactory answer. Part e was rarely answered correctly. Surprisingly, a significant number of students failed to sketch correctly the curve, with a number of answers indicating that the amount of CO2 in blood increases as a result of traversing the lungs.

Q4 Half of the students answered question 4. Part (a) was almost universally answered correctly, with one or two students loosing marks because they rushed the calculation.

Part (b) divided the students somewhat; most could outline the basic relationships between membrane polarisation and potassium ion flux, but around half failed to connect potassium efflux to voltage-gated potassium channels. The final part of the question distinguished class I from class II.1. Most students were unable to explain the origin of the kink in the Na current, but one or two students correctly identified the mechanism. Reasonable answers that were not strictly correct were awarded class I if they demonstrated sound reasoning and knowledge of channel gating mechanisms. Overall the question seemed to classify students appropriately.

