
Engineering Tripos Part IIA THIRD YEAR

Module 3G4: Medical Imaging & 3D Computer Graphics

Solutions to 2023 Tripos Paper

1. MRI imaging and slice selection
(a) An MRI scanner incorporates three gradient coils that can apply an arbitrary linear
variation to the field in each of the principal scanning directions:

∂Bz

∂z
= Gz ,

∂Bz

∂x
= Gx ,

∂Bz

∂y
= Gy

For example, the z-gradient might look like this:

B
z

0
B

f/γ
slope Gz

I

I

zaxial slice
selection

y

x

z

If we apply Gz at the same time as the RF pulse, we can restrict imaging to a particular axial
slice by tuning the frequency of the pulse, since only protons exposed to a field f/γ are
excited. Or we could use x- or y-gradients to select sagittal or coronal slices respectively.

Apart from slice selection, we can also use the gradient fields for phase and frequency
encoding, allowing us to infer where in a slice a particular NMR signal comes from. Con-
tinuing the example of an axial slice, by applying a y-gradient after the RF pulse, the
precessions will go at different speeds according to their y-coordinates. We then switch
off the y-gradient, so the precessions return to their original speeds, but their phases now
encode the y-coordinate. We then apply an x-gradient at the same time as we detect the
NMR signal. The x-gradient causes protons to precess at different speeds according to their
x-coordinates. So, when we detect the signal, phase encodes y and frequency encodes x.

zG

yG

xG

90
o

detect

RF
time

1

We cannot decompose the detected signal into distinct (x, y) signals from a single imaging
sequence like the one above. But, by repeating the sequence with different values of Gy,
we can. This is known as k-space encoding. [30%]

(b) (i) Substituting values into the given equation, we find tp = (π/2)/(2π×42.58×106×
2× 10−6) = 2.936 ms. [5%]

(ii) From the table of Fourier transforms in the Information Data Book, an unmodulated
pulse of duration b = 2.936ms has a spectrum ∼ sinc(πbf) with zeros at n/bHz for
n = 1, 2, . . . Modulating with the carrier shifts this spectrum up to 63699680 Hz.

63697680 63698680 63699680 63700680 63701680
frequency (Hz)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

-101.174 -100.587 -100.000 -99.413 -98.826
z coordinate (mm)

The spectrum is therefore as shown above, where the horizontal axis is labelled both in
terms of frequency f and also the z coordinates of excited spins, calculating according to
Bz = f/γ = 1.5 + 0.04z. [30%]

(iii) The rectangular RF pulse is not bandlimited, so the resolution of the imaged axial slice
is poor: its main lobe is 0.4 mm wide while the side lobes decay slowly and extend indefi-
nitely. Ideally, the RF pulse would have a rectangular spectrum to excite spins in a narrow
axial slice, but this would require a sinc-shaped pulse of infinite duration. Practically, we
would compromise with some sort of windowed sinc pulse, giving a fairly uniform spec-
trum over a narrow range of frequencies, a rapid roll-off and then little energy outside of
the narrow frequency range. Care would need to be taken to balance the amplitude of the
pulse with its duration, to ensure that the flip angle remains 90◦.

The result would be fairly uniform imaging of a selected axial slice of a certain thickness,
with good suppression of slices outside this range. The slice thickness is proportional to
the bandwidth of the RF pulse and inversely proportional to the gradient field strength.
For better axial resolution, we would require a thinner slice but this is difficult to achieve

2

in practice since: for safety reasons, there is an upper limit of around 80 mT/m for the
gradient field strength; an RF pulse with a narrow bandwidth implies a wide main lobe of
the windowed sinc function, which requires a long on-time and hence a long examination;
a very thin slice would imply few excited spins and therefore a low SNR, unless the main
field strength were very high, though B0 is currently limited to 8 T for safety reasons. [35%]

Assessors’ remarks: This question tested candidates’ understanding of signal localisation
in MRI imaging. In (a), most candidates offered solid, textbook accounts of slice selection,
phase and frequency encoding. The most common weakness was neglecting to explain the
need to repeat the sequence with different phase gradients. In (b), although many candi-
dates located the slice correctly at z = −10 cm, very few understood that the rectangular
pulse implied a sinc-shaped spectrum, and hence a sinc-shaped slice selection region. Of
those who did understand this, even fewer were able to apply basic Fourier theory (with
the necessary formulae in the data book) to determine the width of the sinc’s main lobe.
Consequently, most candidates did not understand the cause of the poor axial resolution in
(b)(iii), and hence struggled to suggest how the resolution might be improved.

2. Triangle meshes and vertex normals
(a) Possibly the most obvious way to store this mesh is to have a single list of triangles,
for each of these triangles to store the three vertices, and for each of these vertices to store
the (presumably 3D) locations of that vertex. An alternative is to store the vertices as a
separate list, where the location of that vertex is stored for each vertex. Then a separate list
of triangles stores, for each triangle, the three vertex numbers (but not the actual locations)
that are associated with that triangle.

Various possible features or operations (of which only two are required) include:

Storage size / inefficiency — the single list of triangles is much less efficient in terms
of memory, typically taking up about three times as much space as the separate lists of
vertices and triangles, though that depends on what type is used for locations and vertex
numbers.

Floating point accuracy / rounding errors — in the single list of triangles, the same vertex
is stored multiple times (generally up to six, since that is typically the number of triangles
referencing each vertex). Any operations on that mesh may result in rounding errors which
mean the same vertex ends up with very slightly different locations.

Manually editing the mesh — this generally requires searching the mesh for which part is
closest to where a user clicked, and it is easier to do this directly with the vertex list. For the
single triangle list, all identical vertices would have to be found and moved simultaneously.
In addition, moving a vertex then only means replacing the location of that vertex, since
the triangle list can stay exactly the same. Removing a triangle would be the same with
each scheme.

Checking for consistency — there are many consistency checks, for instance checking
whether a mesh is watertight. These are generally much easier with the second (or more
complex) schemes. [20%]

3

(b) For the normal to the triangle, note that the cross product of two vectors always gener-
ates a vector perpendicular to both, so given a and b are both in the plane of the triangle,
and (for a non-degenerate triangle) are not parallel, then the cross product must represent
the triangle normal. The normalised surface normal would then be given by n̂.

Fig. 1

For the area of the triangle it is easier to think of the magnitude of the cross product, defined
as |a||b| sin θ where θ is the angle between the vectors. If a is considered the base of the
triangle, this can easily be interpreted as the well known ‘half base times height’ formula,
for instance as in Fig. 1. The area is therefore given by |n|. [10%]

(c) (i) Any operation, for instance lighting, which requires interpolation across the mesh
structure, needs the interpolated variable to be defined at the vertices rather than over the
triangle. Hence if the normals are involved in any way in an interpolated operation, they
must be defined at the vertices. Note that this is the case for both Gouraud and Phong
shading, for instance. [10%]

(c) (ii) If the calculated vertex normal is nv, then (where ⊕ represents circular addition, so
that, in this case, 5⊕ 1 = 0):

nv =
1

2

∑
i

ai × bi

=
1

2

∑
i

(o − vi)× (o − vi⊕1)

=
1

2

∑
i

(o × o)− (o × vi⊕1)− (vi × o) + (vi × vi⊕1)

=
1

2

∑
i

(vi⊕1 × o)− (vi × o) + (vi × vi⊕1)

since any vector cross-product with itself is zero, and reversing the order of the cross-
product changes the sign. Splitting out the sums:

nv =
1

2

∑
i

(vi⊕1 × o)− 1

2

∑
i

(vi × o) +
1

2

∑
i

(vi × vi⊕1)

4

However, the first two of these sums are identical: they both end up summing over all
vectors vi. Hence these will cancel out, leaving the final result:

nv =
1

2

∑
i

(vi × vi⊕1)

Note that it would also be possible to demonstrate this by writing out n in full for each of
the six triangles in the mesh, in which case the following result is also valid, though less
concise:

nv =
1

2
((v0 × v1) + (v1 × v2) + (v2 × v3) + (v3 × v4) + (v4 × v5) + (v5 × v0)) [30%]

(c) (iii) The result in (ii) does not depend on the central vertex o at all, and hence will not
be changed as o varies. But the actual normal of o is likely to change as the location varies.
Imagine moving the central point close to one of the edges: naturally one would expect the
normal at that point to be much more like the normal at one of the closer outer vertices,
and to be less affected by those that are further away.

Hence this is only a good way to calculate vertex normals if all the triangles are fairly
similar sizes and shapes, in which case the central vertex will always be fairly equidistant
from the surrounding vertices. [15%]

(c) (iv) We calculated nv by summing the equation for the triangle normal and area: so the
result represents a summed area as well as a summed surface normal. It would be most
natural to see this as the total area of all the triangles containing the central point o, but
this cannot be the case, since it does not depend on o. Imagine moving the central point a
long way out of the plane of the surrounding vertices: this would greatly increase the area
of all the triangles, but it does not change nv at all.

Hence nv must actually represent an area of the polygon defined by the vertices v0 to v5.
These vertices do not have to lie in a plane, and in fact this area is the largest projected
area of that polygon. So |nv| can be used to give an estimate of the area of any 3D polygon
defined by vertices vi. [15%]

Assessors’ remarks: This questioned tested candidates’ knowledge of polygon storage
and the calculation of vertex normals. The fairly standard question in (a) was surprisingly
poorly answered, with marks often lost due to vagueness or lack of precision in the defi-
nition of each storage scheme. (b) was a basic question on vector areas: some candidates
again lost marks here for lack of precision, for instance omitting that it is the magnitude
which represents the area. (c)(i) was answered well be nearly everyone, but (ii) was clearly
the hardest part of the question (which is why it was also worth the most marks). There
were some perfect answers, but many candidates stopped at an early stage before noting
that much of the cross product could be cancelled, or were confused about vectors and
labelled the triangle edges directly as vi. (iii) was well answered, with many candidates
noting the expected loss in accuracy as the midpoint approached the outer polygon. Few
spotted in (iv) that the calculated vertex normal is also the polygonal area.

5

3. Multi-segment curves and repeated points
(a) The continuity within each segment is always at least up to C3 since all segments are
defined using a cubic polynomial. However, the continuity at the joins of each curve (i.e.
where the parameter is t = 1 for one curve, and t = 0 for the next) depends on the
type of curve used. For Bezier curves, each segment shares only one control point, so C0

continuity is guaranteed. Up to C1 continuity is possible by ensuring that the neighbouring
control points are in a straight line including the shared control point. For multi-segment
curves, three join points are shared by each segment. Catmull-Rom curves only exhibit C1

continuity at these joining points, whereas B-splines exhibit C2 continuity. [15%]

(b) The convex hull property applied to a curve states that the whole curve must lie within
the convex hull of the control points which define that curve, i.e. the curve is within
any polygon formed by joining the control points. A more mathematical definition of the
convex hull is that it contains any point which is a linear interpolant of the control points:
i.e. a weighted sum of the control points where all weights are between zero and one, and
the weights sum to one. The B-spline and Bezier both have this property but the Catmull-
Rom does not.

The convex hull property is useful since it constrains the possible location of the curve. If
we need to know whether a curve intersects a given region (for instance a display window),
we can first check if the convex hull of the control points intersects this region. If it does
not, then neither does the curve. [15%]

(c) (i) The easiest way to calculate this is to replace p1 with p2 in the curve definition, and
then set t to 0:

p =
[
t3 t2 t 1

] 1
6

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

p0

p1

p2

p3

p =
[
0 0 0 1

] 1
6

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

p0

p2

p2

p3

p =
1

6

0 0 0 0
0 0 0 0
0 0 0 0
1 4 1 0

p0

p2

p2

p3

p =
1

6
(p0 + 4p2 + p2)

=
1

6
p0 +

5

6
p2

6

Hence the left-hand end point is one-sixth of the way on the line between p2 and p0. This
is shown in Fig. 2 below. By symmetry, the right-hand end of A is on the line p2 to p3.

Fig. 2
[20%]

(c) (ii) Following the same reasoning as for (i) above:

p =
1

6

0 0 0 0
0 0 0 0
0 0 0 0
1 4 1 0

p2

p2

p2

p3

p =
1

6
(p2 + 4p2 + p2)

= p2

Hence the left-hand point is exactly at p2. The right-hand point (needed to sketch the curve
correctly) is one-sixth of the way on the line from p2 to p3, following similar logic to the
result in (i). The sketch is shown in Fig. 3 below.

Fig. 3
[20%]

(c) (iii) The result can be deduced from part (i) and (ii) and the convex hull property. We
know that A must start one-sixth of the way along the line from p2 to p0, and (by symmetry)
B must stop one-sixth of the way along the line from p2 to p4. A must be in the convex hull
of p0. . . p3, which is a straight line, and B must be in the convex hull of p1. . . p4, which is
also a straight line. So both curves lie on these straight lines and they must therefore meet
at the combined point. This is shown in Fig. 4 below.

7

Fig. 4

This can also be deduced mathematically, for the start t = 0 of segment B, again following
on from the previous logic:

p =
1

6

0 0 0 0
0 0 0 0
0 0 0 0
1 4 1 0

p2

p2

p2

p4

p =
1

6
(p2 + 4p2 + p2)

= p2
[20%]

(c) (iv) In all cases, the segments themselves exhibit at least C3 and G3 continuity. The
join between segments A and B is also always C2 continuous, since that is a property of
multi-segment B-spline curves. However, the geometric continuity at the join varies. For
(i) and (ii) it is still G2 but for (iii) it is only G0, i.e. only continuous in value.

This is helpful in the situation where we need to use the B-spline to get a smooth curve but
want to manipulate certain points: (iii) allows us to force the curve to contain a sharp bend
at a particular point, or change of direction, whereas (i) allows us to start in a specified
direction. Note that if these are motion paths, the acceleration is still continuous, so the
motion in (iii) must have zero velocity and acceleration at the G0 point. [10%]

Assessors’ remarks: This question tested candidates’ knowledge of cubic parametric
splines, continuity and the convex hull property. Despite some very good answers to the
introductory work in (a) and (b), many candidates received few marks due to simply stat-
ing what they could remember about splines rather than answering the specific questions.
The more quantitative work in (c) was well answered by most, with some good reasoning
and some good sketches, though several candidates dropped marks due to not wanting to
sketch the cubic curves as straight lines in (ii) and (iii). In (iv), not many candidates noted
that the curves still all had C2 continuity even when they were reduced to G0.

4. Shading and shadow z-buffers
(a) Iλ is the intensity of the reflected light of colour λ, where λ ∈ {r, g, b} for red, green
and blue.

8

Iλ depends on several terms. First, there is the ambient reflection term, cλIaka, which
models indirect illumination of the surface. cλ, where 0 ≤ cλ ≤ 1, specifies the colour
of the surface. Ia is the intensity of the general background illumination, and ka is the
surface’s ambient reflection coefficient.

The next two terms in the model are summed over each point light source i with intensity
Ipi. First there is the diffuse reflection term, cλkdLi.N, which models even reflection of
the light source in all directions. Diffuse reflection is greatest when the surface is pointing
directly towards the light source, and tails away to zero when the surface is side-on to the
light source. Li is the unit vector from the surface point towards the light source, N is
the unit surface normal and kd is the surface’s diffuse reflection coefficient (small for dark
surfaces, high for bright surfaces).

Finally, there is the specular reflection term, ks (Ri.V)n, which models directional reflec-
tion of the light source along the unit mirror vector Ri. V is the unit vector from the surface
point towards the viewer. The viewer only perceives the specular highlight (or glint) when
looking along the mirror direction, or at least close to it. ks is the surface’s specular reflec-
tion coefficient (small for matte surfaces, high for shiny surfaces), and n is the specular
exponent that determines the tightness of the glint. n is high for a tight highlight (e.g. a
perfect mirror) and small for a more blurred highlight (e.g. aluminium).

The diffuse and specular terms are attenuated by a shadow factor Si, where 0 ≤ Si ≤ 1.
Si is the fraction of the pixel shaded from the light source, often calculated using a shadow
z-buffer algorithm. There is also a depth attenuation factor fatt, usually of the form

fatt = min

(
1

a1 + a2d+ a3d2
, 1

)
where a1, a2 and a3 are constants, and d is the distance from the light source to the surface
point. The depth cueing ensures that surfaces with the same orientation, but at different
distances from the viewer, are not assigned the same intensity. [20%]

(b) The finite precision of the shadow z-buffer will affect the critical z′s > zb test when
z′s ≈ zb. We can imagine two types of artifact that might arise.

First, consider a point A at the foot of a wall casting a shadow onto a nearby point B on
the floor. Since A and B are nearby each other, z′s ≈ zb. With infinite precision arithmetic
we expect that z′s > zb, but this might not be the case given the finite precision of the zb
values. The shadow might therefore not be calculated correctly for points on the floor near
the wall, causing the shadow to detach from the base of the wall, as if the wall were flying.
This phenomenon is known as Peter Panning.

Next, consider a point A on a surface that is not in shadow. With infinite precision arith-
metic we expect that z′s = zb, but this might not be the case given the finite precision of
the zb values. Point A might therefore be judged to be in its own shadow! A moiré pattern
of self-shadowing might be observed across the surface. This phenomenon is known as
shadow acne.

9

To minimize these artifacts, the limited precision of the shadow z-buffer should not be
squandered: the near and far clipping planes should be positioned as tightly as possible
around the relevant part of the scene. Defining “relevant” in this context is not straightfor-
ward, depending on the view frustum (i.e. the part of the scene that is visible) and also any
objects that might cast shadows into the view frustum. [20%]

(c) (i)

light source

viewpoint

surface

The frame buffer pixel spacing is isotropic, consistent with viewing from directly above.
The shadow z-buffer pixel spacing and zb values are consistent with the surface being
nearer to the light source on the left and further away on the right. [20%]

(ii) Pixel B coincides with the centre of a shadow z-buffer pixel. Given that the surface
is not shadowed, we would expect z′s = zb though, given the discussion in (b), there is
a possibility that z′s > zb and the pixel is erroneously self-shadowed. Pixel A maps to
the same shadow z-buffer pixel and hence the same value of zb. However, z′s will be less
than for pixel B, and we would therefore expect no shadowing at A. Pixel C also maps
to the same shadow z-buffer pixel and hence the same value of zb. However, z′s will be
greater than for pixel B, and we would therefore expect erroneous self-shadowing at C. The
resulting shadow acne is quite different from the phenomenon in (b). The problem here is
not the k-bit storage precision of the shadow z-buffer, but its limited spatial precision. The
problem is particularly acute with oblique and/or distant illumination where several frame
buffer pixels might map to the same z-buffer pixel. [20%]

(iii) The most straightforward way to suppress shadow acne is to add a bias into the shadow
depth test, i.e. cast a shadow only when z′s > zb + ϵ, where ϵ is the bias. A problem with
this simple fix is that it tends to exacerbate Peter Panning. A more sophisticated approach
adjusts the bias according to the angle between the surface and the light rays, so that the
minimal amount of bias is used at each point: this is known as slope-scaled depth bias. [20%]

Assessors’ remarks: This question tested candidates’ understanding of the Phong illu-
mination and reflection model, and the shadow z-buffer algorithm. Almost all candidates
demonstrated excellent knowledge of the Phong model in (a). In (b), there was a general
appreciation of the difficulties posed by finite-precision z-buffers, but many candidates

10

framed their responses in terms of hidden surface removal instead answering the specific
questions about shadowing. Responses to (c) were better, with many candidates correctly
identifying the cause of the self-shadowing artefacts, though there was little appreciation
of the distinct roles played by the spatial and numerical precision of the shadow z-buffer.

Andrew Gee & Graham Treece
May 2023

11

