Engineering Tripos Part I1A THIRD YEAR

Module 3G4: Medical Imaging & 3D Computer Graphics
Solutions to 2014 Tripos Paper

1. Sinograms and the Radon transform

(a) A projection at angle ¢ is the set of all line integrals through the function perpendicular
to a line which makes an angle ¢ with the z axis.
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If p(z,y) is a function defined on the (z,y) plane, then
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is the projection of u at an angle ¢.

A projection may be displayed with amplitude encoded as brightness.
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A sinogram is the set of all the projections of a single function, at different angles, stacked
up one on top of another.
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(b) First we sketch the shape of the function f.

The projection at ¢ = 0 ramps linearly up to a maximum value of 2.
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The projection at ¢ = 7 /4 has a constant value as the object is of constant thickness in this
direction.
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(c) For 0 < ¢ < /4, the half-width d of the silhouette is cos(¢) (see diagram, below left).
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By symmetry, the half-width then increases as a mirrored cosine in the range /4 < ¢ <
7/2, returning to 1 when ¢ = 7/2. The whole pattern then repeats for 7/2 < ¢ < 7. [20%]

(d) The 2D Radon transform maps a function f(x,y) to the set of its integrals over lines at
perpendicular angles ¢ and distances s from the origin.
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When s = 0, the Radon transform R[f (z,y)] = (d) +dy), where d), = d3. So we just have
to work out d; and substitute in the required value of ¢. Examining the diagram we see
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h = cos(m/4 —¢) cos(m/4—¢)

Hence, if ¢ = /8 we have
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Assessors’ remarks: This question tested the candidates understanding of the Radon
transform and the idea of a projection, as used in computed tomography reconstruction.
Most candidates were able to explain the ideas of a projection and a sinogram in (a) but
fewer were able to get the shape of the projections required in (b). A surprisingly large
number of marks were lost in this part due to elementary errors in geometry. Most candi-
dates got the approximate shape and period for the sinogram outline in (c), but very few got
it exactly correct. Candidates showed good knowledge of the definition of the Radon trans-
form for (d) and many got the numerical calculation in (e) correct which was particularly
pleasing. '

. Laser range scanning and polygon meshes

(a) Scanning issues during laser scanning include:

Surface properties Laser scanning relies on a single, clear, reflection of the laser off the
surface. Surfaces which are highly specular, or translucent, or have fine features
(e.g. hairs) will give multiple or distorted laser reflections. This typically generates
errors in the distance of each point. It is sometimes possible to make the surface
more diffuse and simpler, for instance by wearing tight fitting clothes or dousing the
surface in white powder.

Camera pixel accuracy The depth resolution is determined by the pixel size in the cam-
era image — more pixels give better resolution. The resolution also reduces with
distance from the camera and laser, so scanning surfaces as close as possible reduces
this error.

Object movement It generally takes several minutes to scan most objects and the object
must remain stationary during that time. This leads to point sets which are not consis-
tent with each other, and combining such sets can be difficult. Obviously, the faster
the scan, the lower this error is likely to be. It is also better to rotate the laser scanner
rather than the object.

Obscured features In order to scan the surface, the laser light must reach it, and the
camera see the reflection. Complex surfaces therefore often contain regions which
cannot be scanned, leading to missing data. It may be possible to chop up the object
into several parts to get around this. Otherwise, missing surface parts have to be
approximated in the reconstruction stage.

Laser thickness The laser stripe has a finite thickness. When triangulating, we look for
the centre of the laser reflection in the camera image. If scanning sharp corners, or
changes in reflectance properties, only part of the laser stripe may be reflected, and
the apparent centre will not be correct, resulting in depth errors. This is known as
edge curl. A narrower laser beam will improve this or possible greater camera angle
will improve this.

(b) If we define r and 2y as in the following figure, and r; and r,, as the required resolutions:
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Putting this all together and tidying up, we have:
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This means that both r, and r, scale with the depth z and the camera resolution g, but
Ty, 1s much more sensitive to the camera angle « than r,. When scanning a large object,
parts which are nearer the scanner will have better resolution than parts which are further
away. But also, parts which are further to each side of the scanner (smaller a) will also
have a poorer depth (r,) resolution than parts which are immediately in front of the scanner
(larger o). This difference in 7, with sideways location is more extreme the closer we are
to the scanner.

(c) (i) The area of a triangle is given by half the base length multiplied by the height. If we
align the base with the side from a to b, then this is given by:

1
area = E(b —a)(c—a)sin A

where A is the interior angle at a. This can be expressed by a cross product:

area = %(b—a)x(c—a)
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where v; = {a,b,c}, i € {1,2,3}.

(i1) The direction of p is the normal to the triangle, or more generally the normal to an
average plane passing through all the polygon points. In mesh decimation we are aiming to
remove as many points as possible without affecting the geometric accuracy of the surface.
This is done by testing for each point whether removing it (and re-triangulating) will make
any difference to the surface. So for each point we form an average plane through the
surrounding points, then test how close the point is to that plane: if it is close to it, then
it can safely be removed. Hence if we calculate p from these surrounding points, the
normalized value p gives the normal to this plane which, along with the plane offset, allows
us to perform this test.

Assessors’ remarks: This question investigated laser scanning and mesh properties. (a)
was generally answered very well, though only a few candidates mentioned issues with the
resolution of the camera. Answers to (b) were more variable, with several candidates not
taking advantage of small angles early enough in their working. (c)(i) was generally well
answered and (ii) less so: few candidates mentioned actual issues with mesh simplification,
opting instead to discuss mesh visualisation.

. Spline surface patches and sub-division

(a) All such splines are defined by a basis matrix and a geometry matrix that, when multi-
plied together, give the weightings of the cubic polynomial in the curve parameter ¢. The
way in which the geometry matrix is constructed varies for each type of spline, and hence
the basis matrix will also be different.

A Bézier curve is defined by four control points, two of which define the ends of the curve
and the other two define the end gradients. It is fairly easy to create a single curve seg-
ment, but only provides continuity between segments if neighbouring points are carefully
aligned. It can easily be sub-divided, which makes it easy to refine a pre-existing curve.
It is also useful for display, since the curve is within the convex hull of the control points,
so if a polygon formed from the control points is outside the visible area, the curve does
not need to be drawn. It can also be efficiently displayed by iterative sub-division and then
joining up the resulting control points.

A Catmull-Rom curve will always pass through the control points, and a multiple segment
curve inherently has first order continuity. Hence it is easy to define a line which is fairly
smooth and passes through defined points. However, it does not have the same convex
hull property as the Bézier nor can easily be sub-divided, so conversion is probably neces-
sary before refinement or display. However, the multi-segment nature means moving one
control point still results in the same continuity.

A B-spline curve does not pass through control points, but it does pass quite close to them
and exhibits second order continuity. So it is a good choice when defining a smooth curve
if it is not critical exactly where the curve is located. It does have the convex hull property,
so can be displayed according to whether the control point polygon is visible or not. Again,
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it is probably easier to convert to a Bézier for curve refinement, although like the Catmull-
Rom the control points can easily be moved without changing the overall continuity.

(b) T is the parameter matrix, where
T=[¢t1]

and t usually varies from 0 to 1 along the length of the curve. M is the basis matrix, which
is a 4 x 4 matrix of constants, varying with each type of spline. G is the geometry matrix,
which is a 4 x 3 matrix of physically meaningful points, usually defining the locations of
part of the curve, or the end points or gradients.

For a spline surface patch, we need an additional parameter s and parameter matrix S which
has exactly the same form as T, then the x coordinate of the spline surface is given by:

q,(s,t) = SMQ,M™T”

with similar equations for the ¥ and 2z coordinates. Q,, is a 4 x 4 matrix which is like the
geometry matrix, but contains only the x coordinates of the various physical points which
define the surface patch.

(c) (1) Sub-division is the process of splitting a spline curve in two by creating seven control
points from the original four which define two new curve segments consistent with the
original curve. The matrix L can be used to create new control points (i.e. a new geometry
matrix G), but this only works for a Bézier spline, in which case the new (left hand) control
points are given by

G, =LG

When sub-dividing a Bézier surface patch, the sixteen control points are first grouped into
four rows of four, and each row is sub-divided to give four rows of seven control points.
Then the seven columns are sub-divided to finally give 49 control points. These new
control points form four Bézier surface patches which will match the original surface.

(i1) The control points for the surface patch are symmetrical about the planes x = 1.5 and
y = 1.5, and the z values rise towards these planes of symmetry, hence the maximum
must be at the point (1.5,1.5). With the Bézier basis matrix we could substitute ¢ = 0.5
and s = 0.5 and calculate the new value for z. However, the maxima also falls at the
exact centre which would be the corner of the four new patches after sub-division. Since
a Bézier surface always passes through the corner control points, all we have to do is find
the location of the corner control point of the new left hand patch.

This corner point is the last point in the left hand sub-division, hence we only need the last
row of the matrix L, g [1 3 3 1]. After sub-dividing the curves in both directions, we get
the weights w (to apply to the z values of the existing control points):
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The z values at these locations are:

0110
L= 1 2 21
12 21
0110
Combining these gives z = 2—2 = 1.5, or a coordinate of (1.5,1.5,1.5).

Assessors’ remarks: This question regarded spline surfaces. The bookwork in (a) was
well answered. Most candidates could describe the terms for a spline curve in (b) but
definitions for a spline surface were more variable. Sub-division in (c)(i) was generally
well described, though in many cases only for a curve rather than the required surface.
There were several perfect mathematical analyses for (c)(ii), with others noting the surface
symmetry but often not being able to follow up on this.

. Illumination and reflection, shading and hardware

(a) The first formulation is the standard Phong model. I, is the intensity of the reflected
light of colour A\, where A € {r, g, b} for red, green and blue. I, depends on several terms.
First, there is the ambient reflection term, ¢y, k,, which models indirect illumination of
the surface. c,, where 0 < ¢, < 1, specifies the colour of the surface. I, is the intensity of
the general background illumination, and &, is the surface’s ambient reflection coefficient.
The next two terms in the model are calculated for a point light with intensity [,. First there
is the diffuse reflection term, c,k4L.N, which models even reflection of the light source in
all directions. L is the unit vector from the surface point towards the light source, N is
the unit surface normal and &, is the surface’s diffuse reflection coefficient (small for dark
surfaces, high for bright surfaces). Finally, there is the specular reflection term, ks (R.V)",
which models directional reflection of the light source along the unit mirror vector R. 'V
is the unit vector from the surface point towards the viewer. The viewer only perceives the
specular highlight when looking along the mirror direction, or at least close to it. k; is the
surface’s specular reflection coefficient (small for matte surfaces, high for shiny surfaces),
and n is the specular exponent that determines the tightness of the glint. n is high for a tight
highlight (e.g. a perfect mirror) and small for a more blurred highlight (e.g. aluminium).

The second formulation is Blinn’s approximation, which has a different specular term in-
volving the halfway vector H = (L + V)/|L + V|. Calculating R involves considerable
computational expense: R = 2(L.N)N — L. The advantage of the N.H alternative (which
produces very similar specular highlights) becomes apparent when the light source and
viewer are both at infinity. Under these conditions, L., V and H are constant across the
scene. So calculating the specular component requires only a single dot product N.H.

(b) Both Gouraud and Phong shading work with vertex normals, which are found by av-
eraging the normals of all polygons incident at a vertex. Gouraud shading proceeds by
calculating a colour at each vertex using the vertex normal and the Phong model. Colours
for interior pixels are found by bilinear interpolation. For efficiency, the interpolation can
be formulated using fast, incremental calculations.
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Phong shading interpolates the normals instead of the intensities. This tends to restore the
original curvature of a surface, so that highlights can be reproduced accurately. The dis-
advantage of Phong shading is its expense. Even though the normals can be interpolated
using incremental calculations, the interpolation considers the three components indepen-
dently, so the vector must be renormalized at each pixel. Then, a separate intensity for
each pixel is calculated using the Phong model.

Gouraud shading is comparatively fast, though it produces less photo-realistic renderings.
It is particularly poor with the specular component. If a highlight should impinge on a
polygon but not extend to its vertices, Gouraud shading will miss the highlight.

(c) Assuming a monochromatic surface and no texture mapping, the most hardware effi-
cient implementation would require just a four-value rasterizer. We could then interpolate
depth z and the three elements of N from vertices to pixels, but there would be no capacity
for interpolating L. and V as well. This would still permit Phong shading, as long as the
light source and viewer were at infinity. If this were the case, L and V would be constant
across the scene and only N would need interpolating. The pixel shader program would
receive the interpolated elements of N, normalize them, then evaluate

I = ex(Loka + LkLN) + Lk, (NH)"

(i.e. the Phong model with Blinn’s approximation) to produce intensity values at each pixel.
Note that L and H are constants. With a bigger rasterizer we could relax the constraints
and interpolate L. and V as well.

Assessors’ remarks: A popular question, with the bookwork in (a) and (b) well answered
by the vast majority of candidates. (c) was much more variable, with many candidates
offering vague comments about graphics hardware without addressing the specific issue of
accelerated Phong shading. Any sensible discussion of the minimum number of interpo-
lated values would need to mention the Blinn approximation with L. and V constant. There
were several excellent answers, though these were few and far between.

Andrew Gee, Richard Prager & Graham Treece
May 2014
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