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(a) A standard method to solve this question consists in finding the eigenvalues and

show that they are all strictly positive.
The eigenvalues are 3±

√
4 + v2. One of them is always strictly positive. The smallest

is strictly positive if 4 + v2 < 9.

=⇒ |v| <
√
5

(b) (i) The relationship Ax = b can be rewritten as x = N−1Px+N−1b. This assumes
in particular that N has an inverse.

For a suitable choice of N and P, it is possible to calculate the solution iteratively
using:

xk+1 = N−1Pxk +N−1b

The process can be initiated with an arbitrary value for x0. If the method converges,
xn will tend towards the solution x.

(ii) We can consider here the evolution of the error from one iteration to the next,
i.e. the difference between the current estimate of the solution and the true solution x:
ek = xk − x. We know that:

x = N−1Px+N−1b

xk+1 = N−1Pxk +N−1b

Hence:
xk+1 − x = N−1Pxk −N−1Px

=⇒ ek+1 = N−1Pek

In order to converge to the solution, we must have ek tend towards 0. This is achieved
if all eigenvalues of N−1P are strictly less than 1 in absolute value, i.e. that the spectral
radius of N−1P is less than one.

(c) (i) In this case, N =

[
1 0
0 5

]
and P =

[
0 −v
−v 0

]
.

This leads to N−1P =

[
0 −v

−v/5 0

]
The eigenvalues are ±v/

√
(5) We therefore need |v| <

√
5

(ii) Here, N = I and P =

[
0 −v
−v −4

]
.

The eigenvalues of N−1P are −2±
√
4 + v2.

One of them is always lower than -4, so much larger than 1 in absolute value. This
iteration scheme would therefore be unstable for all values of v.
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Optimisation
For D-dimensional column vectors x ∈ RD and b ∈ RD consider the function of x

f(x) =
1

2
xTQx− xTb+ 1Tg(x)

where the D ×D matrix Q has elements qi,j, each i = 1, · · · , D and j = 1, · · · , D, the
D-dimensional vector of ones is denoted as 1 = [1, 1, · · · , 1]T and g(x) is an element-wise
application of the function g(·) which acts on each component of the vector x such that
g(x) = [g(x1), g(x2), · · · , g(xD)]

T.

1. Derive and justify the necessary condition for a point x∗ ∈ RD to be a strong local
minimum of the function f(x). [15%]

For a point x∗ to be a local minimum and as there are no constraints so that all
directions in RD are feasible then the necessary condition is that ∇f(x∗) = 0 which
for the function should be Qx∗ − b + g′(x∗) = 0 where g′(x∗) is a component wise
defined vector with elements g′(.).

2. Derive and justify the sufficient condition for a point x∗ ∈ RD to be a strong local
minimum of the function f(x). [15%]

For an arbitrary vector d then dT(Q+ g′′(x∗))d > 0 must be satisfied for x∗ to be a
strong local minimum. Where the non-zero elements of the diagonal matrix g′′(x∗)
are the second derivatives g′′(x∗

i ).

3. Derive a steepest descent method for the D-dimensional function f(x) and provide
an expression for the step-size for each iteration based on a second-order Taylor
expansion of f(x). [40%]

The steepest descent method requires an iteration such that xk+1 = xk − αk∇f(xk)
where ∇f(xk) = Qxk − b + g′(xk). Based on the Taylor-expansion of the function
and noting that x− xk = −αk∇f(xk) then it follows that

αk = − ∇f(xk)
T∇f(xk)

∇f(xk)THk∇f(xk)

with Hk = Q+ g
′′
(xk) where g

′′
(xk) is a diagonal matrix.

4. For the specific case where D = 2, Q is given as an identity matrix, and the nonlinear
term is the exponential function, i.e. g(·) = exp(·), assess whether f(x) is convex in
R2 and state the implication on the nature of the point x∗. [30%]

The Hessian is I + g
′′
(xk) which yields a determinant (1 + g

′′
(x1))(1 + g

′′
(x2)) that

has to be strictly greater than zero for all x for it to be convex. It is clear that
when the exponential function is used for g(·) then this will be the case, ie. the strict
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positivity will hold due to the positive value of the exponential function for all values
of argument. This therefore implies that the minimum is in fact a unique global
minimum.
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1. Importance Sampling

(a)(i) This is a standard Monte-Carlo approximation so

µ̂N =
1

N

N∑
i=1

h(x(i))

[10%]

(a)(ii) Initially compute the expected value of the integral estimate from a single sample
drawn from p(x). The expected value of the estimate is unbiased so

µ = E {µ̂N}

for all values of N . Now computing the variance

varp(µ̂1) = E
{
(h(x)− µ)2

}
= σ2

from the question. The variance from N independent estimators is then given
by

varp(µ̂N) =
1

N2

N∑
i=1

varp(µ̂1) =
σ2

N

The variance does not depend on the dimensionality of x, just the number of
samples N and the variance σ2. [30%]

(b)(i) Re-expressing the original expectation

µ =

∫
h(x)p(x)dx =

∫
h(x)

(
p(x)

q(x)

)
q(x)dx

As samples are now being drawn from q(x) the Monte-Carlo approximation
becomes

µ̃N =
1

N

N∑
i=1

h(x̃(i))

(
p(x̃(i))

q(x̃(i))

)

Thus

w(i) =
p(x̃(i))

q(x̃(i))

[20%]
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(b)(ii) For this expression to converge to µ it is necessary for q(x) to be non-zero
wherever p(x) is non-zero. Otherwise there will be a region of the space that
cannot contribute to the calculation of µ. [10%]

(b)(iii) The same process is used to compute the variance. Again the expected value of
will be µ.

varq(µ̃1) =

∫
h(x)2

(
p(x)

q(x)

)2

q(x)dx− µ2

=

∫
h(x)2

(
p(x)

q(x)

)
p(x)dx− µ2

Thus

varp(µ̂N)− varq(µ̃N) =
1

N

∫
h(x)2

(
1− p(x)

q(x)

)
p(x)dx

What we would like to do is to make this value as large as possible. When
q(x) = p(x) the differences is zero. However it is possible to make this value
positive by setting p(x)/q(x) to be small when h(x)2p(x) is large. The ideal
(usually non-practical) form is to set

q(x) =
1

µ
p(x)f(x)

This maximises the differences. [30%]
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