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Q2
(a) For a minimum, the gradient of U is zero and its Hessian is positive definite.
U
- = kle "k}()Cz - xl): 0
ox,
kyx
(ky +h3)x) =kyxy = x= k23+2k3
U
£:k3(X2—xl)+kIX2_P=O
(k3 + ky)xy = kyxy = P
kax
by +k)xy—ky—2—=P
(ks +kp)x, y—
(kg + kg )y + ey )xy = ki xy = Py + k)
(klk2 + k1k3 + k2k3 )X2 = P(k2 + k3)
' Pk, +k v kg Pk
= (ky + k3) N, <. 3
kyky + kyks + ky ks ky +ksy  kiky + kiks + kyks
Need to check that the Hessian is positive definite.
J*U 9%U J*U
—2:k2+k3. :—k3.—'—2‘:k1+k3
8xl ? 8x18X2 ? 8_x2
ky +ky  —ky
H=
Hence [ s Ky + kj
The determinants of the principal minor matrices are
Jl = k2 + k3
and Jy = (ky + ks) (K +k3)—k32=k1k2+k1k3 + kyky
Both principal minor matrices are clearly positive for positive &;s, so H is positive definite
and this is indeed a minimum. [30%]
(b) Newton’s method gives X =X — H(x,»)_lVU(x,-)

ky +kq)x —k
Using the results from (a) VU:{ (ky + k3 )y = Ky }

—k3xl +(kl +k3)X2 -P

golftks k| 1 kithks  ky
—ky  ky+ ks kvky + ks Hhoks | ks ky+ kg

X _ X1 _ 1 k1 +k3 k3 (k2+k3)xl—k3x2
b%) new X9 k1k2 + klk3 + k2k3 k3 kz + k3 —k3x1 +(kl +k3)X2 -P
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X B {xl~
Lz}new - xz__
! (g + Jey) ey + ks )xy — kg (Ky + Ky )y — Iy + K (ky + ky)xy — ksP }
ki + ks + kokes | ey ey + ey )ty — k2t — k(g + key)xy + (g + Ky ) ey + s )y — (Key + iy )P

Xy X 1 (kyky + kyky + kykey) x| — ks P
X Jhew  L¥2] Rika + ks +koks| (kiky + kiks + koky)x, — (kg + k)P

|:x1:| ~ ] { (kykey + kyks + heyley ) x) — (kyhey + kyley + ks )y + key P }

Xy | ke + ke + deks | (K + k)P

This is as expected as the problem is quadratic. Newton’s Method converges in one iteration
on quadratic problems.

[30%]
5x;-3
(c) For the values given VU R
+ 4x2 -1

—3x1
|5 3
-3 4
From the initial solution (x,x,)=(0,0)
0 0
0
T O H
o = dpdy 1 1
0~ T - 7 -
5 =310 -3
doHdy 15 ] [0 1]
-3 41 4
o] 1fo 0
x1=x0+a0d0: 0 +Z ) = 0.25

—3%x0.25 | [-0.75
VU(XI):onzs—l :[ }

2 2
ﬁo{‘vwxl)' ={O‘175} =0.5625

VU(x)|
~0.75 o] [ 075
d, =—-VU(x,)+Bydy =- +0.5625 ~ |=
‘ () + Bodo { 0 } M [0.5625}

H

For the second iteration




Q3
(a)

(b)
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0.5625 4

~0.75
; [0.75  0.5625]
_dVU(x) _ 0 ~

s 3] 075 20625] 11
QA 075 05625 075 0.5625]
-3 4 | 05625 0

0| 4| 075 0272727] |+
X2=X1+a1d1: + — — or
025] 11[0.5625] |0.4s54545] | %
This is the location of the potential energy minimum (easily shown by substituting values in

the expressions obtained in (a) or (b)).
The behaviour is as expected. On quadratic problems the CGM converges in a number of

iterations equal to the number of control variables (two here). [40%]
Using the minimum matrix method, at each step as much flow as possible is allocated to the
available arc with the lowest cost. The tableau below summarises the steps of the minimum
matrix method in this case.
Distribution centres
Factories D E F Supply
, S0k 180388 | ] 60 e
A 150 [step 1] 50 [step 4] 20050
TR0 SR RS 00 SRS TR0 T
B 200 [step 2] 200
TR 05 RS BR[O R R D0 B
¢ 200 [step 5] 100 [step 3] 300200
Demand | +50 250 200 300 109
This matches the solution shown on the network diagram in the question. [20%]

The first step is to calculate the reduced costs using the standard formulae:

u; +v; = ¢ to find the simplex multipliers associated with the current basis, and

¢; = ¢; — u; — v; to find the reduced costs for all non-basic variables.
Doing this on the tableau associated with the initial feasible basis given by the minimum

matrix method yields:

Distribution centres

Factories D E F U;
50 180 | 160

A — — 190 0

805 300 | 60

B -60 30 — 20
125 310 100

C o5 — — 130
v; 50 180 -30
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The lowest reduced cost is for arc BD. Introducing this into the basis:

Distribution
centre

Factory

The largest possible value of 6 is 150, giving:

Distribution

Facto
Yy centre

1200] (A
200] (B)

[300]

Repeating the process of finding the reduced costs for the new basis:

Distribution centres
Factories D E F U;
LS040 N 8085160 4
A 60 — 190 0
F80500| 300 LG 16050
’ == Gy == 90
o 1§5 AE 310 ._.--:12\0 130
v -10 180 =30
As there are no negative reduced costs, this is the minimum. [50%]

(¢) The northwest-corner method ignores costs entirely. It starts with the upper leftmost corner
(the northwest corner) and assigns the maximum possible flow allocation to that cell. Then it
moves to the right, if there is any remaining supply in the first row, or to the next lower cell, if
there is any remaining demand in the first column, and assigns the maximum possible flow
allocation to that cell. The procedure repeats itself until the lowest right corner is reached, at
which point all the supply is exhausted and all the demand satisfied.

The table overleaf summarises the steps of the northwest-corner method, in terms of the
transportation tableau, in this case.
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Distribution centres
Factories D E F Supply
A 150 [step 1] 50 [step 2] 200 30
B 200 [step 3] 200
C 300 [step 4] | 369
Demand 150 250 200 300

However, this alone does not constitute a spanning tree — the nodes associated with factory C
and distribution centre F are disconnected from the other nodes. To proceed to solve the
problem using the standard method (not required), an arc with zero flow must be added
between node C and node D or node E or between node F and node A or node B, e.g. as
shown below.

Facto Distribution
i centre
[200] >@ [-150]
[200] [-250]
[300] >@ [-300]

The minimum matrix method is generally preferred as a method for generating an initial

feasible basis because, unlike the northwest-corner method, it takes costs into consideration. It

is therefore likely that the initial feasible basis the minimum matrix method yields will be

closer to the optimum, and fewer iterations of the simplex method will be needed to solve the
problem at hand. [30%]
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