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EGT2
ENGINEERING TRIPOS PART IIA

Monday 5 May 2014 9.30 to 11

Module 3A6

HEAT AND MASS TRANSFER

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 A multi-pass, cross-flow heat exchanger is laid out as in Fig. 1 between air and a
fluid. Fluid with a constant specific heat capacity c enters a tube at a mass flow rate
ṁ and temperature Ts1 into the first pass and leaves at temperature Tf 1 . The flow
continues onto a second pass at an inlet temperature Ts2 = Tf 1 , and so on to the next
pass. Air flowing with a constant specific heat capacity ca enters the heat exchanger
in cross flow at a mass flow rate ṁa and temperature Ta1 . The overall heat exchange
coefficient between the two fluids is constant and equal to U , and the corresponding air
temperature during the exchange can be taken as the inlet temperature. The tubes have a
perimeter P, and length L. Assume that the ratio C = ṁc/(ṁaca) < 1. Tube end effects
can be neglected.

(a) Determine the exit temperature of each i-th pass, Tf i, as a function of the inlet
temperature of each pass, the oncoming air temperature, and the geometric and operating
parameters of the heat exchanger. [20%]

(b) Show that the effectiveness of each pass is ε = 1− exp[−UPL/(ṁc)]. [20%]

(c) Show that the ratio of the heat rate exchanged between successive passes is
1− (1+C)ε . [20%]

(d) Sketch the temperature evolution of both fluids as a function of the number of
passes. Assume Ta1 > Ts1 and (1+C)ε < 1. [20%]

(e) Show that for a very large number of passes, the total heat exchange reaches a limit
of Q̇ = ṁc(Ta1−Ts1)/(1+C). Discuss the meaning of the result. [20%]
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2 A nuclear fuel rod with thermal conductivity λ1 generates heat at a uniform
volumetric rate ġ. The fuel rod is encased in a tube with inner radius a, outer radius b and
thermal conductivity λ2. The surface area of the tube is enhanced with radial fins of
thermal conductivity λ2, thickness t and length L. The fin tips are insulated, and the
edges lose heat to their surroundings at temperature T∞ with a constant convective heat
transfer coefficient, h. The cross section of the fuel rod is shown in Fig. 2.

(a) (i) Derive an expression for the temperature T within the fuel rod as a function
of radius r and the boundary temperatures. Assume that conduction is steady and
in the radial direction only. [15%]

(ii) Ignoring the effect of the fins, derive an expression for the temperature in the
encasing tube. [15%]

(b) (i) Show that the temperature at a distance x from the base of the fin is given by

T (x)−T∞

T (b)−T∞

=
cosh [m(L− x)]

cosh(mL)

where m =
√

2h
λ2t . [35%]

(ii) Using your answers to parts (a) and (b)(i), sketch the complete temperature
profile from the centre of the fuel rod to a fin tip. Assume that λ2 = λ1. Label any
important features in the profile. [20%]

(iii) Discuss the factors which might affect the assumption of constant heat
transfer coefficient h. [15%]
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3 A cylindrical perfusion tube of inner radius R is used to sublimate a substance
present on the tube walls into an air stream, as shown in Fig. 3. The flow of air
can be considered as steady, fully developed, and laminar, so that the axial velocity is
u = 2ub

(
1− (r/R)2

)
, where r is the radial coordinate, and ub is the bulk velocity. The

mass fraction of the sublimating substance is sufficiently small so that the total mass flow
rate through the tube and the mixture density ρ are not affected. The gradient of species
mass fraction in the axial direction, z , is assumed to be constant. The diffusion coefficient
for the sublimating species in air is given as D .

(a) Using a species balance across an element dz , for the substance mass fraction Y ,
show that the radial mass diffusion flux of the substance at the tube surface, js , is constant

and equal to
1
2

ρubR
dY
dz

. [10%]

(b) Starting from the differential species conservation equations in cylindrical
coordinates,

u
∂Y
∂ z

+ v
∂Y
∂ r

= D

[
1
r

∂

∂ r

(
r

∂Y
∂ r

)
+

∂ 2Y
∂ z2

]
show that :

Y −Yc =
ubr2

2D

dY
dz

(
1− r2

4R2

)
where Yc is the mass fraction at the centreline. [30%]

(c) Show that the bulk mass fraction of the substance Yb is given as: [20%]

Yb = Yc +
7

48
ubR2

D

dY
dz

(d) Calculate the radially diffusive flux at the surface r = R, and compare it to your
answer in (a). Discuss why the flux does not depend on D . [20%]

(e) Show that the non-dimensional mass transfer coefficient is given by the Sherwood
number below:

Sh = hs(2R)/D = 48/11

Comment on your answer compared to the equivalent Nusselt number for a laminar tube.
[20%]
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4 (a) Show that the net rate of radiative heat loss Q̇i from a grey diffuse
surface i of area Ai and total emissivity εi i, s

Q̇i =
εiAi (Ebi− Ji)

(1− εi)

where Ebi is the black body radiation and Ji is the radiosity of the surface. [15%]

(b) If a surface i is radiating to N others, show that the explicit expression for its
radiosity Ji is

Ji =
1

1−Fii (1− εi)

[
(1− εi)

N

∑
j=1, j 6=i

Fi jJ j + εiEbi

]

where Fi j is the view factor between the ith and jth surface. [25%]

(c) Figure 4 shows two parallel plates of equal area in a large enclosure at temperature
T3 (surface 3). Surface 1 is held at T1 and has a total emissivity ε1 of 0.8. Surface 2 is
held at T2 and has a total emissivity ε2 of 0.5. Both surfaces are grey and diffuse.

(i) The view factor between the parallel surfaces is F12 = F21 = 0.2. Evaluate
the remaining view factors in the system. [10%]

(ii) Using the equation derived in part (b) find the 2×2 matrix A and vector C,
such that

AJ = C

where J is the vector of the unknown radiosities. Express your answer in terms of
the temperatures given, as well as the Stefan-Boltzmann constant, σ . [30%]

(iii) Find the radiant heat lost by Surface 1 per unit surface area. Express your
answer as a function of the same parameters as in Part (b)(ii). [10%]

(d) Surface 1 is now subject to convective heat loss to a bulk flow with temperature
T∞ , and its net heat transfer flux is q1 . Describe how you would modify the equations in
Part (b)(ii) to solve for T1 and J1. [10%]
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