$3c7/2024$ Q (a) Vith z_{sy} =0 the aquilibrium equations exeduce $\frac{\partial G_{3x}}{\partial x} = 0$ 8 $\frac{\partial G_{3y}}{\partial y} = 0$ => $G_{xx} = f(y)$ & $G_{yy} = g(x)$ Howevery $6y - 0$ on $y = 0$ + x \Rightarrow g(n)=0, ie $\sigma_{y} = 0$ The compatibility equation $\left(\frac{3^2}{2\alpha^2}+\frac{3^2}{2y^2}\right)(5x+5y-5) = 0$ then implies $\frac{3^{2}f}{34^{2}}=0$ $\Rightarrow f = -p_0 - p_1 y = 6x^2$ But $\sigma_{xx} = -\rho(y)$ on $x=0$ => $p(y) = p_0 + p_1 y$

 (b) I $Y = 0$ in all directions Mohrs circle reduces to a paint with $\sigma_{\mathbf{a}\mathbf{n}}$ = $\sigma_{\mathbf{b}}$ Equilibrium equations then maan $\frac{\partial S_{z}}{\partial x} = \frac{\partial S_{z}}{\partial x} = 0$ 2 Day = 20 = 0 ie 6 is spatially uniform. Thus, the boundary pressures consistent with this uniform $f_{\mu\nu}$ ld ore $g_{\mu}(x) = p(y) = -\frac{1}{2}\sigma$ C) (i) With $P(y)$ - Po $\leq q(x) = O$ from $\leq q$ E_{nn} = - P_o of E_{yy} = 0. Superpose a $uniform$ stress $C_{\alpha}y = \frac{p_0}{2}$ on $x = 0$ & $y = 0$ The equilibrium equations become 5 y $\frac{1}{\sqrt{2}}$ $\overline{\mathcal{O}}$ $\frac{3}{2}$ = $\frac{3}{2}$ $\frac{3}{2}$ Combining with (a) at any point (n,y $(6x^3-6y^2-7x^2) = (-p^0-6p^0-7p^0/2)$

(ii) $(0, h_{0}/2)$ $\frac{1}{1}$ $\frac{2\pi}{4}$ $\frac{1}{2}$ $\frac{b}{\sqrt{2}}$ $(\frac{p_0}{2})^2+(\frac{p_0}{2})^2=-\frac{p_0}{2}(\sqrt{2}+1)$ $= -p_{0}$ at T/g clochuise from n-clirection $S_2 = -\frac{b_0}{2} + \sqrt{(\frac{b_0}{2})^2 + (\frac{b_0}{2})^2} = \frac{b_0}{2}(\sqrt{2}-1)$ at 3T/g anticlochure from 21-direction.

92 (a) $\phi = Ar^2 \theta^m$ $\frac{\partial \phi}{\partial r} = \frac{2Ar\phi^m}{\partial r^2}$ $\frac{D^{2}\phi}{\partial a^{2}} = m (m-1)Ar^{2}\theta^{m-2}$ $\nabla^2 \phi = [40^2 + m(m-1)]A0^{m-2}$ $\nabla^{4} \phi = [4m (m-1) \phi^{2} + m(m-1) (m-2) (m-3)] A \phi^{m-4} = 0$ $m = 0, 1$ (b) i) Stresses for $\phi = Ar^2 \otimes$ $F = \frac{1}{2} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \phi^2} = 2A\phi$ $\sigma_{\text{oa}} = \frac{\partial^2 \phi}{\partial x^2} = \text{RAG}$ $\frac{r_{r0}=-2}{2^{2}}(\frac{1}{r}\frac{\partial\phi}{\partial r})=-A$

=> Tractions on surface of half-space are $G_{00}(r,0)=0$ $\gamma_{r\theta}(\tau,o)=-A$ $\frac{\gamma}{\gamma}$ ro $(\Gamma, \pi) = -A$ σ_{∞} $(\Gamma, \pi) = 2\pi A$ $(\mathcal{C}_{r}, \mathcal{X}_{r\alpha})$ (i) $\sqrt{(6_{33}, 8_{99})}$ $(50, 16)$ $S_{xx} = A(20 - xin20) = A \left[2 \tan^{-1} y - 2xy \right]$ $G_{y} = A (20 + 0.0120) = A \left[2 \frac{\pi}{2} + \frac{2 \pi y}{2} \right]$ $\frac{\gamma_{ay}}{\gamma_{12}^2 - A \cos 2\theta - A \left(\frac{x^2 - y^2}{x^2 + y^2}\right)}$

 93 $\phi = 0$ on boundary is automatically satisfied $\left(\alpha \right)$ by boundary equation $x^4 - 6x^2y^2 + y^4 + 5c^2(x^2 + y^2) - 6c^4 = 0$ $\sqrt{2}\phi - \left(\frac{2^{2}}{2z^{2}} + \frac{2^{2}}{2yz}\right)\phi =$ $\left[12x^{2}-12y^{2}-12x^{2}+12y^{2}+10c^{2}+10c^{2}\right]=20\beta c^{2}$ => with $-2G\alpha = 20pc^2$ ie $\beta = -G\alpha$ p is a valid Prandt stres function. $\frac{26}{x}$
 $\frac{200}{x}$ = $\frac{30}{y}$ = $\frac{120^{2}y + 4y^{3} + 10c^{2}y}{y^{3}}$ = - $\frac{G\alpha}{10c^2}$ $\left[-12x^2y + 4y^3 + 10c^2y \right]$ $\frac{\gamma}{\gamma^2}$ = - $\frac{\partial \phi}{\partial x}$ = - β $\left[4x^3 - 12xy^2 + 10c^2x\right]$

 $= \frac{G\alpha}{10c^2} \left[4x^3 - 12xy^2 + 10c^2x \right]$ on $x = y$; $2x = -6y$ = $9x$ $10e^x$ $8x - 10e^x$ Thus the shear stress component along $x = y$ which is given by $\frac{c_{x}}{2} + \frac{1}{\sqrt{2}}$ $\frac{c_{y}}{2} = 0$ as expected by symmetry. At $(x, y) = (c, c)$ $\frac{c_{xz}}{x} = -\frac{c_{yz}}{x} = \frac{6\alpha}{10c^2} (8c^3 - 10c^3)$ $= -0.2GAC$ $\frac{1}{\sqrt{3}}$ a perfectly square cross-section $\frac{1}{\sqrt{3}}$ = $\frac{1}{\sqrt{3}}$ = $\frac{1}{\sqrt{3}}$ at the corner as complementary values on the 10 guileen 10 surfaces are zoro <u>c)</u> $y = 0$ $\left(y = \frac{9 \alpha}{10^{2}}\right)$ $4x^2 + 10c^2$:

which is a may at $x = c$ ie $\frac{V_{y}}{d^{2}}|_{mov} = \frac{Qd}{10c^{2}}(14c^{3}) = 1.4Gc\alpha$. $Q = 2 \int d^2x dy$ $\frac{1}{2}$ = $\frac{1}{2}$
= $\frac{26}{10c^2}$ $\int_{-c}^{c} \frac{1}{2(4-6a^2)^2 + 5c^2(a^2+y^2) - 6c^4} dxdy$ = $-26x$ $\int_{10c^2}^{c} \left[\frac{x^5}{5} - \frac{6x^2y^2}{3} + y^4x + \frac{5c^2x^3}{3} + \frac{5c^2y^2x}{3} - 6c^4x \right] dy$ $\frac{c}{10c^2}\int_{-6}^{6} \left(\frac{2c^5}{5} - 4c^3y^2 + 2cy^4 + 10c^5 + 10c^3y^2 - 12c^5\right)dy$ = $-26x \left[2c^5y - 4c^3y^3 + 2cy^5 + 10c^5y + 10c^3y - 12c^5y\right]^{9-c}$
= $-26x \left[2c^5y - 4c^3y^3 + 2cy^5 + 10c^5y + 10c^3y - 12c^5y\right]^{9-c}$ $Q = -2G_{NC}^{4} \left(-\frac{176}{15}\right) = \frac{176}{75} G_{NC}^{4}$

