367/2024

Q1 (a) With 2 mg = 0 the aquilibrium equations reduce $\partial \sigma_{xx} = 0$ & $\partial \sigma_{y} = 0$ $\partial \pi$ $\partial \gamma$ => $G_{xx} = f(y) & G_{yy} = g(x)$ Howevery $G_{yy} = 0$ on $y = 0 + \infty$ => g(n) = 0, ie 5yy = 0 The compatibility equation $\left(\frac{\partial^2}{\partial \pi^2} + \frac{\partial^2}{\partial y^2}\right) (G_{\pi\pi} + G_{yy}) = 0$ then implies $\frac{\partial^2 f}{\partial y^2} = 0$ => f = - po - piy = Gar But on = - p(y) on x = 0 $=> p(y) = p_0 + p_1 y$

If $\chi = 0$ in all directions Mohris wich reduces to a point with $\sigma_{\pi\pi} = \sigma_y = \sigma_0$. (b-) Equilibrium equations then maan $\frac{\partial \mathcal{G}_{RR}}{\partial \mathcal{R}} = \frac{\partial \mathcal{G}_{R}}{\partial \mathcal{R}} = 0$ 2 <u>2633 - 260 - 0</u> 24 23 ie to is spatially conform. Thus, the boundary pressures consistent with this reinform field ore $q_i(x) = p(y) = -\varepsilon_0$. (c)(i) With p(y) = po & q(a) = 0 from (a) En :- po & oyy = D. Superpose a uniform stress Zy = po/2 on z=0 & y=0. The equilibrium equations become <u> 2 mg - 2 kong - 0 => Kong = po</u>. On Dy - 2 Combining with (a) at any point (n, y) (Gna, Gyy, May) = (-po, 0, po/2)

(ii) (°s P./2) (-po, - Po) $-\frac{p_{0}}{2} - \frac{\left(\frac{p_{0}}{2}\right)^{2} + \left(\frac{p_{0}}{2}\right)^{2}}{2} = -\frac{p_{0}}{2}\left(\sqrt{2} + 1\right)$ at TI/8 clochwise from n-direction at 3TT/8 anticloclassie from 2 - direction.

Q2 (a) $\phi = Ar^2 \phi^m$ $\frac{\partial \phi}{\partial r} = \frac{2}{2} \frac{\partial r}{\partial r} \frac{\partial \phi}{\partial r^2} = \frac{2}{2} \frac{\partial \phi}{\partial r^2} = \frac{$ $\frac{\partial^2 \phi}{\partial \rho^2} = m (m-i) Ar^2 \phi^{m-2}$ $\nabla^2 \phi = [4\phi^2 + m(m-i)]A\phi^{m-2}$ $\nabla^4 \phi = [4m(m-1)\phi^2 + m(m-1)(m-2)(m-3)]A\phi^{m-4} = 0$ m = 0(b) (i) Stresses for $\phi = Ar^2 \phi$ $G_{rr} = \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \rho^2} = 2AQ$ $\sigma_{\infty} = \frac{\partial^2 \phi}{\partial r^2} = 2A\phi$ $\frac{\chi_{ro} = -2}{2r} \left(\frac{1}{r} \frac{2\phi}{2\phi} \right) = -A$

=> Tractions on surface of half-space are 500 (T, 0)= O ~ro(r,o)= -A $\mathcal{C}_{ro}(r_{S}\pi) = -A$ 500 (Γ, T) = 2TTA (err, Yro) (ii)(Gara , May 20 (Eyz, "") (500 rra) $\overline{\sigma_{nn}} = A(2Q - \sin 2Q) = A\left[2 \tan^2 y - 2ny\right]$ $\overline{n} \approx 2 n^2 + y^2$ $\gamma_{ny} = -A\cos 2\Theta = -A\left(\frac{\pi^2 - y^2}{\pi^2 + y^2}\right)$

(iii) 4 a das 2π Α (my = - A (n-a)² - y² $(\gamma - \alpha)^2 + \gamma^2$ Zny $A \quad (n+a)^2 - y^2$ $(n+a)^2 + y^2$ Soule -B (A)B.C 5yy (n, 0) = - p = $2\pi A$ - <u>þ</u> A -=> $(n_y = \frac{p}{2\pi} \left[\frac{(n-q)^2 - y^2}{(n-q)^2 + y^2} + \frac{(n+q)^2 - y^2}{(n+q)^2 + y^2} \right]$

93 (a) \$=0 on boundary is automatically satisfied by boundary equation $\frac{1}{2} x^{4} - 6x^{2}y^{2} + y^{4} + 5c^{2}(x^{2} + y^{2}) - 6c^{4} = 0$ $\nabla^2 \phi = \left(\frac{\partial^2}{\partial z^2} + \frac{\partial^2}{\partial y^2}\right) \phi =$ $\left[12x^2 - 12y^2 - 12x^2 + 12y^2 + 10c^2 + 10c^2\right] = 20 \text{ Bc}^2$ => with $-2Gx = 20pc^2$ is p = -Gx $10c^2$ & is a valid Prandtl stres function. $\begin{array}{c} (b) \\ \mathcal{U}_{nz} = \frac{\partial \phi}{\partial y} = \beta \left[-12 \partial^2 y + 4 y^3 + 10 c^2 y \right] \\ \end{array}$ $= -\frac{G\alpha}{10c^2} \left[-12x^2y + 4y^3 + 10c^2y \right]$ $\mathcal{C}_{yz} = -\frac{\partial \phi}{\partial x} = -\beta \left[4x^3 - 12xy^2 + 10c^2 x \right]$

 $= \frac{G\kappa}{10c^2} \left[4x^3 - 17xy^2 + 10c^2x \right]$ m x = y; $\chi_{z} = -\chi_{z} = \frac{G_{K}}{10c^{2}} \begin{bmatrix} 8z^{3} - 10c^{2}z \end{bmatrix}$ Thus the shear stress component along x = y which is given by $\frac{1}{\sqrt{2}} \chi_{z}^{2} + \frac{1}{\sqrt{2}} \chi_{z}^{2} = 0 \quad \text{as expected by}$ $\frac{1}{\sqrt{2}} \chi_{z}^{2} + \frac{1}{\sqrt{2}} \chi_{z}^{2} = 0 \quad \text{as expected by}$ symmetry. $C_{xz} = - \gamma_{yz} = G_{x} \left(8c^{3} - 10c^{3} \right)$ $10c^{2}$ At (a,y)= (c,c) = -0.29×C For a perfectly square cross-section $\chi_{zz} = \chi_{yz} = 0$ at the corner as complementary values on the longitudinal surfaces are zero. (c) On y=0 $\gamma_{z}=\frac{G\alpha}{10c^{2}}(4\pi^{3}+10c^{2}\pi)$

which is a mor at z = c $\frac{ie}{y_2} = \frac{G\alpha}{10c^2} (14c^3) = 1.4 Gc\alpha.$

$$Q = -2 G_{AC}^{4} \left(-\frac{176}{15}\right) = \frac{176}{75} G_{AC}^{4}$$

4 a),				1.															
	L	ames	s e	gu	a11	ong	2													
		brr	=	A		5			6	90 =	A	+ -	<u>B</u>							
					1	<i>, </i>							Y -							
		$r \rightarrow$	8		5	- =	A =	λ												
		10			r		1	I	3					R	40	22				
		V =	a		U	rr ·	= ^	- 9	Z		5		=>	D =	5					
		~		1	1		21		1		4		2 \							
		br	=	λ.	- - - -	5	$\frac{\alpha}{r^2}$	=	~ (5	r	-/							
		~			1.		, 2 ,				1-	,2	1							
		600	= /	× +	5		r^2	• =	λ	(14	5	r2	-)							
	,											-								
b	1	Note	e	th	at	60	9 >	Gru	. >	62	e =	0								
														,						
		At t	hc	hol	e bo	ound	da-	2 1	vitk	n r	= 9,	40	cor	ding	, to	, 7,	resc	a:		
		5	- 1	0 -	- Y	_	__	λ	<u> </u>	5.	2	/		with	2.	- a	=	2	= 5	Y
		60					~			4a ²	+ -	5r ²	•						C	7
C		Equil	ibı	riuv	n e	equa	tior	, 1	he.	sam	e v	vhe	ther	- ela	stic	Dr	p lasti	c		
		d			٢	1										-				
		dr			Urr) =	- 0	99												
																	4			
		In +	he	0	last	ic	re	a jo	n :	K	2	= Y				(. <u>a</u>	-)		
					<u>_</u>		V	8			70						\smile	plast.	elas	Ι
		0	- (r	brr) =	= Y										-	/		
		ar			,															
		6.	r 1	=	(+	D V	-													
		Hole	. (500	nda	ary														
								Y	D			2			D		()	V		
		r	= (a		orr	-	1 4	a	-	-	5		=>	1/=	= a	15	-1)		
				~		V		1			VI									
		_	>	6,	r ·	= 1	+ -	r	5		()									

